10 100base tx что это
Четвертушка Ethernet-а: старая скорость, новые возможности
5 февраля этого года был утверждён новый стандарт на 10-мегабитный Ethernet. Да, вы верно прочитали: десять мегабит в секунду.
Для чего в 21-м веке нужна такая «маленькая» скорость? Для замены того зоопарка, который скрывается под ёмким названием «полевая шина» — Profibus, Modbus, CC-Link, CAN, FlexRay, HART и т.д. Их слишком много, они несовместимы между собой и относительно сложны в настройке. А хочется просто воткнуть кабель в коммутатор, и всё. Как с обычным Ethernet.
И вскоре это станет возможным! Знакомьтесь: «802.3cg-2019 — IEEE Standard for Ethernet — Amendment 5:Physical Layer Specifications and Management Parameters for 10 Mb/s Operation and Associated Power Delivery over a Single Balanced Pair of Conductors».
Чем же интересен этот новый Ethernet? Прежде всего – он работает по одной витой паре, а не по четырём. Поэтому у него меньше разъёмы и тоньше кабели. И можно использовать уже проложенную витую пару, идущую к датчикам и исполнительным механизмам.
Вы можете возразить, что Ethernet работает до 100 метров, а датчики расположены гораздо дальше. Действительно, раньше это было проблемой. Но 802.3cg работает на расстоянии до 1 км! По одной паре! Неплохо?
На самом деле, ещё лучше: по этой же паре может подаваться и электропитание. Вот с него и начнём.
IEEE 802.3bu Power over Data Lines (PoDL)
Думаю, многие из вас слышали о PoE (Power over Ethernet) и знают, что для передачи питания нужны 2 пары проводов. Ввод/вывод питания сделан в средних точках трансформаторов каждой пары. Используя одну пару такое сделать невозможно. Поэтому пришлось делать по-другому. Как именно – показано на рисунке внизу. Для примера добавлен и классический PoE.
Здесь:
PSE – power sourcing equipment (источник питания)
PD – powered device (устройство на дальнем конце, потребляющее электричество)
Изначально 802.3bu имел 10 классов электропитания:
Цветом выделены три условных градации напряжения источника: 12, 24 и 48В.
Обозначения:
Vpse — напряжение источника питания, В
Vpd min — минимальное напряжение на PD, В
I max — максимальный ток в линии, А
Ppd max — максимальная потребляемая мощность PD, Вт
С появлением протокола 802.3cg добавилось ещё 6 классов:
Разумеется, при таком многообразии PSE и PD должны согласовывать класс электропитания перед подачей полного напряжения. Делается это с помощью SCCP ( Serial Communications Classification Protocol). Это низкоскоростной протокол (333 бит/с), основанный на 1-Wire. Он работает только тогда, когда в линию не подано основное питание (в т.ч. в спящем режиме).
На блок-схеме показано, как выполняется подача питания:
Согласование класса питания можно не делать, если он заранее известен. Такой вариант называется Fast Startup Mode. Применяется, например, в автомобилях, т.к. там нет необходимости менять конфигурацию подключенного оборудования.
Инициировать переход в спящий режим может как PSE, так и PD.
Теперь перейдём к описанию передачи данных. Там тоже интересно: в стандарте определены два режима работы – дальнобойный и для небольших расстояний.
10BASE-T1L
Это вариант для большой дальности (long reach). Основные характеристики следующие:
Стоит упомянуть, что 10BASE-T1 только один из стандартов Single Pair Ethernet (SPE). Есть ещё 100BASE-T1 (802.3bw) и 1000BASE-T1 (802.3bp). Правда, они разрабатывались для автомобильных применений, поэтому там дальность только 15 (UTP) или 40 метров (STP). Однако, в планах уже есть и дальнобойный 100BASE-T1L. Так что в будущем добавят автосогласование скорости.
А пока согласование не используется – заявлен «быстрый старт» интерфейса: меньше 100мс от подачи питания до начала обмена данными.
Ещё одна опция (необязательная) – увеличение амплитуды передачи с 1 до 2.4В для улучшения отношения сигнал/шум, уменьшения количества ошибок, противодействия индустриальным помехам.
Ну и, разумеется, EEE. Это способ экономить электричество за счёт отключения передатчика, если в данный момент нет данных для передачи. На диаграмме показано, как это выглядит:
Нет данных – отсылаем сообщение “я ушла спать” и отключаемся. Изредка просыпаемся и отсылаем сообщение “я ещё здесь”. Когда появляются данные, противоположной стороне выдаётся предупреждение “я просыпаюсь” и начинается передача. То есть, постоянно работают только приёмники.
Теперь посмотрим, что придумали со вторым вариантом стандарта.
10BASE-T1S
Уже по последней букве понятно, что это протокол для коротких расстояний (short reach). Но зачем он нужен, если на коротких расстояниях и T1L работает? Читаем характеристики:
Но у режима мультипоинт есть недостатки. Основной из них – разделяемая среда передачи данных. Конечно, коллизии разрешаются с помощью CSMA/CD. Но неизвестно, какая при этом будет задержка. А для некоторых применений это критично. Поэтому в новом стандарте дополнили мультипоинт специальным режимом PLCA RS (см. следующий раздел).
Второй недостаток – в мультипоинте не работает PoDL. То есть питание придётся подавать по отдельному кабелю или брать где-то на месте.
Впрочем, в режиме точка-точка PoDL работает и на T1S.
PLCA RS
Работает этот режим следующим образом:
Результат использования PLCA – внизу на графиках. Первый – задержка в зависимости от загрузки, второй – пропускная способность в зависимости от количества передающих узлов. Хорошо заметно, что задержка стала гораздо более предсказуемой. И она в худшем случае на 2 порядка меньше, чем в худшем случае CSMA/CD:
И пропускная способность канала в случае PLCA выше, т.к. не расходуется на разрешение коллизий:
Разъёмы
Изначально выбирали из 6-ти вариантов разъёмов, предложенных разными фирмами. В результате остановились на этих двух вариантах:
Для обычных условий эксплуатации был выбран LC разъём IEC 63171-1 компании CommScope.
Для суровых условий эксплуатации – семейство разъёмов IEC 63171-6 (бывший 61076-3-125) компании HARTING. Эти разъёмы рассчитаны на степени защиты от IP20 до IP67.
Разумеется, разъёмы и кабели могут быть как UTP, так и STP.
Прочее
Можно применять обычный четырёхпарный кабель Ethernet, используя каждую пару для отдельного канала SPE. Чтобы не тянуть куда-то вдаль четыре отдельных кабеля. Или использовать однопарный кабель, а на дальнем конце поставить коммутатор однопарного Ethernet.
А можно подключить этот коммутатор прямо в локальную сеть предприятия, если в дальние дали уже протянута сеть по оптоволокну. Воткнуть там в него датчики, а показания с них смотреть здесь. Прямо по сети. Без конвертеров интерфейсов и шлюзов.
И ведь это не обязательно должны быть датчики. Могут быть видеокамеры, домофоны или «умные» лампочки. Приводы каких-нибудь клапанов или турникеты на проходных.
Так что перспективы открываются интересные. Вряд ли, конечно, SPE заменит все полевые шины. Но изрядный кусок он у них откусит. Уж в автомобилях-то точно.
PS Я не нашёл текст стандарта в открытом доступе. Приведенная выше информация собиралась по кусочкам из разных презентаций и доступных в интернете материалов. Так что в ней могут быть неточности.
Ethernet
Ethernet — пакетная технология передачи данных. Разработана преимущественно для локальных компьютерных сетей.
Стандартами Ethernet определяются проводные соединения и электрические сигналы на физическом уровне, а на канальном уровне модели OSI определяются формат кадров и протоколами управления доступом. В основном, Ethernet описывают стандарты IEEE группы 802.3.
Это самая распространенная технология ЛВС, особенно в середине 90-х годов прошлого века. Своим появлением Ethernet вытеснила такие устаревшие технологии, как Arcnet, FDDI и Token ring.
История
Корпорация Xerox PARC разработала Ethernet одновременно со многими другими своими первыми проектами. Общепринято, что технология Ethernet была изобретена 22 мая 1973 года Робертом Меткалфом (Robert Metcalfe). Он составил докладную записку для главы PARC о потенциале технологии Ethernet, что и стало свидетельством ее создания. Однако, законное право на технологию разработчик получил, лишь спустя несколько лет.
В 1976 году Меткалф вместе со своим ассистентом Дэвидом Боггсом (David Boggs) выпустили брошюру под названием «Ethernet: Distributed Packet-Switching For Local Computer Networks». Меткалф покинул Xerox в 1979 году и основал компанию 3Com, которая занималась продвижением компьютеров и локальных вычислительных сетей (ЛВС). Он убедил руководство компаний DEC, Intel и Xerox работать совместно с целью разработки стандарта Ethernet (DIX).
Впервые стандарт Ethernet был опубликован 30 сентября 1980 года. По выходу на рынок он вступил в соперничество с двумя крупными запатентованными технологиями: token ring и ARCNET. Они в скором времени были раздавлены под потоками хлынувшей на рынок продукции Ethernet. Так, 3Com стала основной компанией в своей отрасли.
Технология
Стандарт первых версий (Ethernet v1.0 и Ethernet v2.0) говорит о том, что в качестве передающей среды в нем используется коаксиальный кабель. Впоследствии стали использовать витую пару и оптический кабель.
Каковы преимущества использования витой пары перед использованием коаксиального кабеля?
В качестве веской причины перехода на оптический кабель стала необходимость в увеличении длины сегмента без повторителей. Управление доступом в случае с сетью на коаксиальном кабеле представляет собой множественный доступ с обнаружением коллизий (CSMA/CD, Carrier Sense Multiple Access with Collision Detection), скорость передачи данных достигает 10 Мбит/с, размер пакета от 72 до 1526 байт.
Полудуплексный режим работы (узел не может передавать и принимать информацию одновременно) сопряжен с ограничением по количеству узлов в одном сегменте сети. Оно ограничено предельным значением (1024 рабочих станции). На физическом уровне можно устанавливать более жесткие ограничения, к примеру, к сегменту тонкого коаксиала можно подключить не более 30 рабочих станций, а к сегменту толстого коаксиала — не более 100. Впрочем, сеть, которая построена на одном разделяемом сегменте, становится неэффективной задолго до достижения предельного значения количества узлов. Это происходит из-за полудуплексного режима работы.
В 1995 году был принят стандарт IEEE 802.3u Fast Ethernet, его скорость составляла 100 Мбит/с, появилась возможность работы в режиме полный дуплекс.
Формат кадра
Существует несколько форматов Ethernet-кадра:
Как дополнение Ethernet-кадра он может содержать тег IEEE 802.1Q для идентификации VLAN, к которой он адресован, и IEEE 802.1p для указания приоритетности. Разные типы кадра обладают разным форматом и значением MTU.
MAC-адреса
В ходе разработки стандарта Ethernet предусматривалось, что каждая сетевая карта должна обладать уникальным 6-байтным номером (MAC-адресом), зашитым в нее во время изготовления. Данный номер применяется в целях идентификации отправителя и получателя кадра. Предполагается, что при появлении в сети нового компьютера, сетевому администратору не придется вновь настраивать MAC-адрес.
Как достигается уникальность MAC-адресов? Каждый производитель получает в координирующем комитете (IEEE Registration Authority) специальный диапазон, состоящий из шестнадцати миллионов (2^24) адресов, по мере истечения которых, запрашивает новый диапазон. Так, по трем старшим байтам MAC-адреса можно определить производителя. Кроме того, существуют специальные таблицы, которые позволяют определить производителя по MAC-адресу.
Все без исключения современные сетевые платы позволяют программным образом изменить MAC-адрес, но если плата будет, к примеру, обесточена, то при сбросе данных, восстановится исходный MAC-адрес.
Разновидности Ethernet
Скорость передачи данных и передающая среда определяют несколько видов технологии Ethernet. Вне зависимости от способа передачи стек сетевого протокола и программы работают одинаково почти во всех вариантах.
Большая часть Ethernet-карт имеет поддержку нескольких скоростей передачи данных (применяется автоопределение скорости и дуплексности, для достижения наилучшего соединения между двумя устройствами). Если автоопределение не работает, скорость подстраивается под партнера, активируется режим полудуплексной передачи. К примеру, присутствие в устройстве порта Ethernet 10/100 говорит о том, что через него можно работать по технологиям 10BASE-T и 100BASE-TX, а порт Ethernet 10/100/1000 имеет поддержку стандартов 10BASE-T, 100BASE-TX и 1000BASE-T.
Ранние версии Ethernet
Схема, при которой к одному кабелю витой пары подключается более двух устройств, работающих в симплексном режиме, никогда не применялась в Ethernet, однако, в теории это вполне возможно реализовать. Но такой принцип применялся в работе с коаксиальным кабелем. Вот почему все сети на витой паре применяют топологию «звезда», тогда как сети на коаксиальном кабеле построены на топологии «шина». Терминаторы для работы по витой паре встроены в каждое устройство, поэтому применять дополнительные внешние терминаторы в линии нет необходимости.
Fast Ethernet (100 Мбит/с)
Gigabit Ethernet (1 Гбит/с)
Ethernet 10G (10 Гбит/с)
Новый 10 Гбит-ный стандарт Ethernet состоит из семи стандартов физической среды для LAN, MAN и WAN. Сегодня он описывается поправкой IEEE 802.3ae и должен войти в следующую ревизию стандарта IEEE 802.3.
Компания Harting объявила о выходе первого в мире 10-гигабитного соединителя RJ-45, который не требует инструментов для установки. Модель получила название HARTING RJ Industrial 10G.
Ethernet: 40 Гбит/с и 100 Гбит/с
По наблюдениям Группы 802.3ba, требования к пропускной полосе для приложений сетевого ядра и прочих вычислительных функций растут с разными скоростями. Это, в свою очередь, определяет необходимость двух соответствующих стандартов для следующих поколений Ethernet: 40GbE и 100GbE.
ИТ База знаний
Полезно
— Онлайн генератор устойчивых паролей
— Онлайн калькулятор подсетей
— Руководство администратора FreePBX на русском языке
— Руководство администратора Cisco UCM/CME на русском языке
— Руководство администратора по Linux/Unix
Навигация
Серверные решения
Телефония
FreePBX и Asterisk
Настройка программных телефонов
Корпоративные сети
Протоколы и стандарты
Не путать с «интернет»!
Онлайн курс по Кибербезопасности
Изучи хакерский майндсет и научись защищать свою инфраструктуру! Самые важные и актуальные знания, которые помогут не только войти в ИБ, но и понять реальное положение дел в индустрии
Видео: Ethernet на пальцах
Обобщенно про Ethernet
В терминах семиуровневой модели OSI (если не знаете про нее, почитайте, это интересно!), стандарт Ethernet живет на первом и на втором уровнях. На первом уровне описаны способы передачи электрических, оптических и беспроводных (радио, например) сигналов, а на втором формирование кадров (фреймов). И тут мы делаем вывод:
Ethernet “по полочкам”
Скорость
В 1999 году, благодаря технологическому “рывку”, на свет появился Gigabit Ethernet, который уже поддерживает подключения скоростью 1000 Мбит/с или 1 Гбит/с. Отметим, что “гигабитными” линками зачастую в корпоративных сетях подключает даже сервера.
Линком в профессиональной среде называют канал подключения того или иного узла. Фраза “подключил к свичу сервер гигабитным линком” означает, что коллега подключил кабелем UTP сервер к коммутатору по стандарту Gigabit Ethernet.
И пожалуй финалочку по скорость: впервые в 2002 году IEEE опубликовал стандарт 802.3ae, в котором описал 10 Gigabit Ethernet, или как его еще называют 10GE, 10GbE и 10 GigE. Догадаетесь, на какой скорости он работает? 😉
Кабели
Для работы с более высокоскоростными стандартами, такими как Gigabit Ethernet и 10 Gigabit Ethernet понадобится кабель категории 5e или 6 категории
Ethernet vs. Wi-Fi: преимущества
Стабильность сигнала
На самом деле развертывание локальной сети на базе проводного подключения дороже и сложнее. Но конечно есть преимущества, а особенно для организаций. В первую очередь, вспомним: Wi-FI передается по радиочастотам. Если вы живете в Москве и слушаю радио на машине въезжали в Лефортовский туннель вы точно знаете, что происходит с радиосигналом по мере погружения в туннель. Тоже самое происходит и с Wi-Fi.
Безопасность
Отметим, что как правило, Ethernet работает на удаленности 100 метров от от роутера. При большем расстоянии нужен некий репитер сигнала.
Ethernet vs. Wi-Fi: недостатки
Стоимость
С одной стороны, в домашней сети, достаточно просто подключить 1 кабель к порту вашего ПК и все работает. Здесь стоимость отличия от домашней Wi-Fi сети складывается только из стоимости кабеля. А что если вы организация? Кабелей нужно больше, к тому же, 1 кабель = 1 порт на коммутаторе. Соответственно, нужно закупать коммутаторы, фаерволы (безопасность, а как же?), маршрутизаторы. Именно поэтому, инвестиции в проводные Ethernet сети выше, чем в беспроводные.
Порты
Мобильность
Самое важное, пожалуй. С Ethernet вы жестко завязаны на одном месте (особенно это характерно в офисе, где у вас скоммутирована Ethernet розетка). Дома, если у вас “красивый” ремонт, кабели спрятаны под плинтус. Поэтому, мобильностью и гибкостью здесь и не пахнет.
С Wi-Fi можно легко подключать ноутбуки, планшенты и мобильные телефоны. Представьте забавный кейс: по пути в туалетную комнату, вы берете с собой ноутбук с кабелем, вместо мобильного телефона, в котором привычно листаете любимую ленту. Пожалуй, это тот самый случай, когда лучше почитать надписи на освежителе воздуха.
Итоги
Онлайн курс по Кибербезопасности
Изучи хакерский майндсет и научись защищать свою инфраструктуру! Самые важные и актуальные знания, которые помогут не только войти в ИБ, но и понять реальное положение дел в индустрии
Сети на витой паре от Ethernet до 100 Gigabit Ethernet
Современный мир все больше входит в зависимость от объемов и потоков информации, идущей в различных направлениях по проводам и без них. Все началось достаточно давно и с более примитивных средств, чем сегодняшние достижения цифрового мира. Но описывать все виды и способы, при помощи которых один человек доносил нужные сведения до сознания другого, мы не намерены. В данной статье хочется предложить читателю рассказ о не так давно созданном и успешно развивающемся сейчас стандарте передачи цифровой информации, который называется Ethernet.
Рождение самой идеи и технологии Ethernet происходило в стенах корпорации Xerox PARC вместе с другими первыми разработками этого же направления. Официальной датой изобретения Ethernet стало 22 мая 1973 года, когда Роберт Меткалф (Robert Metcalfe) составил докладную записку для главы PARC о потенциале технологии Ethernet. Однако запатентовали ее только через несколько лет.
Изначально по предложенным стандартам (Ethernet v1.0 и Ethernet v2.0) собирались использовать в качестве передающей среды коаксиальный кабель, но в дальнейшем пришлось отказаться от этой технологии и перейти на использование оптических кабелей и витой пары.
Основным преимуществом в начале развития технологии Ethernet стал метод управления доступом. Он подразумевает множественные соединения с контролем несущей и обнаружение коллизий (CSMA/CD, Carrier Sense Multiple Access with Collision Detection), скорость передачи данных при этом равна 10 Мбит/с, размер пакета от 72 до 1526 байт, в нем же описаны методы кодирования данных. Предельное значение рабочих станций в одном разделяемом сегменте сети ограничено числом 1024, но возможны и другие более малые значения при установке более жестких ограничений к сегменту тонкого коаксиала. Но такое построение очень скоро стало неэффективным и на смену ему в 1995 году пришел стандарт IEEE 802.3u Fast Ethernet со скоростью 100 Мбит/с, а позже был принят стандарт IEEE 802.3z Gigabit Ethernet со скоростью 1000 Мбит/с. На данный момент уже в полной мере используется 10 Gigabit Ethernet IEEE 802.3ae, обладающий скоростью в 10 000 Мбит/с. Кроме того, уже имеем разработки направленные на достижение скорости в 100 000 Мбит/с 100 Gigabit Ethernet, но обо всем по порядку.
Очень важной позицией, лежащей в основе стандарта Ethernet, стал формат его кадра. Однако его вариантов существует довольно много. Вот некоторые из них:
Для различных типов кадра имеют и различные форматы и значения MTU.
Функциональные элементы технологии G igabit Ethernet
Отметим, что производители Ethernet-карт и других устройств в основном включают в свою продукцию поддержку нескольких предыдущих стандартов скоростей передачи данных. По умолчанию, используя автоопределение скорости и дуплексности, сами драйвера карты определяют оптимальный режим работы соединения между двумя устройствами, но, обычно, есть и ручной выбор. Так покупая устройство с портом Ethernet 10/100/1000, мы получаем возможность работать по технологиям 10BASE-T, 100BASE-TX, и 1000BASE-T.
Более распространенные и оптимизированные для своего времени модификации 10 Мбит/с Ethernet:
Самый распространенный и недорогой выбор на момент написания статьи Быстрый Ethernet (100 Мбит/с) ( Fast Ethernet ):
Полоса пропускания (не хуже), МГц*Км
1000BASE-LX (лазерный диод 1300 нм)
Одномодовое волокно (9 мкм)
Многомодовое волокно
(50 мкм)
Многомодовое волокно
(62,5 мкм)
1000BASE-SX (лазерный диод 850 нм)
Многомодовое волокно
(50 мкм)
Многомодовое волокно
(62,5 мкм)
Многомодовое волокно
(62,5 мкм)
Экранированная витая пара STP
(150 ОМ)
* стандарты 1000BASE-SX и 1000BASE-LX предполагают наличие дуплексного режима
** Оборудование некоторых производителей может обеспечивать большее расстояние, оптические сегменты без промежуточных ретрансляторов/усилителей могут достигать 100 км.
Технические характеристики стандартов 1000Base-X
10 Gigabit Ethernet
Еще достаточно дорогой, но вполне востребованный, новый стандарт 10 Гигабит Ethernet включает в себя семь стандартов физической среды для LAN, MAN и WAN. В настоящее время он описывается поправкой IEEE 802.3a и должен войти в следующую ревизию стандарта IEEE 802.3.
И наконец, что мы знаем про 100-Gigabit Ethernet (100-GE), еще достаточно сырую, но вполне востребованную технологию.
В апреле 2007 года, после собрания комитета IEEE 802.3 в Оттаве, исследовательской группой Higher Speed Study Group (HSSG) было принято мнение о технических подходах в формировании оптических и медных каналов 100-GE. На данное время окончательно сформирована рабочая группа 802.3ba по разработке спецификации 100-GE.
Как и в предыдущих разработках, стандарт 100-GE будет учитывать не только экономические и технические возможности его осуществления, но и их обратную совместимость с имеющимися системами. На данное время потребность в таких скоростях неоспоримо доказана ведущими компаниями. Постоянно растущие объемы персонализированного контента, в том числе при доставке видео с порталов типа YouTube и других ресурсов, применяющих технологии IPTV и HDTV. Нужно упомянуть также видео по требованию. Все это определяет потребность в 100 Gigabit Ethernet операторов и сервис-провайдеров.
Но на фоне большого выбора старых и перспективно новых технологических подходов в рамках группы Ethernet мы хотим более подробно остановиться на технологии, которая сегодня только приобретает полноценную массовость использования в связи с понижением стоимости ее компонентов. Gigabit Ethernet может полноценно обеспечить работу таких приложений, как потоковое видео, видеоконференции, передача сложных изображений предъявляющих повышенные требования к пропускной способности канал. Преимущества повышения скоростей передачи в корпоративных и домашних сетях становятся все более бесспорным, с падением цен на оборудование такого класса.
Сейчас получил максимальную популярность стандарт IEEE. Принятый в июне 1998 года, он был утвержден как IEEE 802.3z. Но поначалу в качестве среды передачи использовался только оптический кабель. С утверждением в течение последующего года дополнения стандарта 802.3ab средой передачи стала неэкранированная витая пара пятой категории.
Gigabit Ethernet является прямым потомком Ethernet и Fast Ethernet, хорошо зарекомендовавших себя за почти двадцатилетнюю историю, сохранив их надежность и перспективность использования. Наряду с предусмотренной обратной совместимостью с предыдущими решениями (кабельная структура остается неизменной) он обеспечивает теоретическую пропускную способность в 1000 Мбит/сек, что приблизительно равно 120 Мб в секунду. Стоит отметить, что такие возможности практически равны скорости 32-битной шины PCI 33 МГц. Именно поэтому гигабитные адаптеры выпускаются как для 32-битной PCI (33 и 66 МГц), так и для 64-битной шины. Наряду с таким увеличением скорости Gigabit Ethernet унаследовал все предыдущие особенности Ethernet, такие как формат кадров, технологию CSMA/CD (чувствительный к передаче множественный доступ с обнаружением коллизий), полный дуплекс и т.д. Хотя высокие скорости внесли и свои нововведения, но именно в наследовании старых стандартов состоит огромное преимущество и популярность Gigabit Ethernet. Конечно, сейчас предложены и другие решения, такие как ATM и Fibre Channel, но здесь сразу теряется главное преимущество для конечного потребителя. Переход на другую технологию ведет за собой массовую переделку и переоборудование сетей предприятия, тогда как Gigabit Ethernet позволит плавно наращивать скорость и не изменять кабельное хозяйство. Такой подход и позволил Ethernet-технологии занять доминирующее место в области сетевых технологий и завоевать более 80 процентов мирового рынка передачи информации.
Нас, как и простого обывателя, больше заинтересовал 1000Base-CX в виду его работы на экранированной витой паре (STP «twinax») на короткие расстояния и 1000BASE-T для неэкранированной витой пары категории 5. Главным отличием 1000BASE-T от Fast Ethernet 100BASE-TX стало то, что используются все четыре пары (в 100BASE-TX использовались только две). Каждая пара при этом может передавать данные со скоростью 250 Мбит/сек. Стандарт обеспечивает дуплексную передачу, причем поток по каждой паре обеспечивается в двух направлениях одновременно. В связи с сильными помехами при такой передаче технически реализовать гигабитную передачу по витой паре было намного сложнее, чем в 100BASE-TX, что потребовало разработки специальной скремблированной помехоустойчивой передачи, а также интеллектуального узла распознавания и восстановления сигнала на приеме. В качестве метода кодирования в стандарте 1000BASE-T было использовано 5-уровневое импульсно-амплитудное кодирование PAM-5.
Критерии по выбору кабеля тоже стали более жесткими. Для уменьшения наводок, однонаправленной передачи, возвратных потерь, задержек и фазового сдвига, была принята к использованию категория 5e для неэкранированной витой пары.
Обжим кабеля для 1000BASE-T производится по одной из следующих схем:
Прямой (straight-through) кабель.
Перекрестный (crossover) кабель.
Схемы обжима кабеля для 1000BASE-T
Нововведения коснулись и уровня MAC-стандарта 1000BASE-T. В Ethernet-сетях максимальное расстояние между станциями (коллизионный домен) определяется исходя из минимального размера кадра (в стандарте Ethernet IEEE 802.3 он равнялся 64 байтам). Максимальная длина сегмента должна быть такой, чтобы передающая станция могла обнаружить коллизию до окончания передачи кадра (сигнал должен успеть пройти в другой конец сегмента и вернуться обратно). Соответственно, при увеличении скорости передачи нужно либо увеличивать размер кадра, тем самым увеличивая минимальное время на передачу кадра, либо уменьшать диаметр коллизионного домена.