26 устранение вредного влияния реакции якоря в машине постоянного тока

Устранение вредного влияния реакции якоря

В связи с тем что реакция якоря неблагоприятно влияет на рабочие свойства машины постоянного тока[1], при проектирова­нии машины принимают меры к устранению реакции якоря или хотя бы к ослаблению ее влияния до допустимых пределов.

Компенсационная обмотка. Наиболее эффективным средством подавления влияния рёакции якоря по поперечной оси является применение в машине компенсационной обмотки. Эту обмотку укладывают в пазы полюсных наконечников (рис. 26.7) и вклю­чают последовательно с обмоткой якоря таким образом, чтобы МДС компенсационной обмотки Fк была противоположна по на­правлению МДС обмотки якоря Fa. Компенсационную обмотку делают распределенной по поверхности полюсного наконечника всех главных полюсов машины. При этом линейную нагрузку для компенсационной обмотки принимают равной линейной нагрузке обмотки якоря.

Включение компенсационной обмотки последовательно в цепь якоря обеспечивает автоматичность компенсации МДС якоря при любой (в пределах номинальной) нагрузке машины. Таким образом, в машине постоянного тока с компенсационной обмот­кой при переходе от холостого хода к режиму нагрузки закон распределения магнитной индукции в зазоре главных полюсов остается практически неизменным. Однако в межполюсном про­странстве часть МДС якоря остается некомпенсированной. Не­желательное влияние этой МДС на работу щеточного контакта устраняют применением в машине добавочных полюсов (см.§ 27.4).

Компенсационные обмотки применяют лишь в машинах сред­ней и большой мощности — более 150—500 кВт при U > 440 В,

26 устранение вредного влияния реакции якоря в машине постоянного тока

Рис. 26.7. Компенсационная обмотка

работающих с резкими колебаниями нагрузки, например в дви­гателях для прокатных станов. Объясняется это тем, что компен­сационная обмотка удорожает и усложняет машину и ее приме­нение в некоторых машинах экономически не оправдывается.

Увеличение воздушного зазора под главными полюсами. В машинах малой и средней мощности, не имеющих компенса­ционной обмотки, вредное влияние реакции якоря по поперечной оси ослабляют соответствующим выбором воздушного зазора под главными полюсами. При этом следует иметь в

виду, что при достаточно малом воздушном зазоре и значительной линейной нагрузке реакция якоря по поперечной оси может не только осла­бить магнитное поле под одной из частей главного полюса, но и перемагнитить его, т. е. изменить полярность — «опрокинуть поле». Некоторое увеличение воздушного зазора под главными полюсами, особенно на их краях, значительно ослабляет действие реакции якоря. Однако не следует забывать, что увеличение воз­душного зазора ведет к необходимости повышения МДС обмотки главных полюсов, а следовательно, и к увеличёнию размеров полюсных катушек, полюсов и габарита машины в целом.

На этом же принципе уменьшения МДС поперечной реакции якоря за счет повышенного магнитного сопротивления на пути ее действия основан и другой способ ослабления действия реакции якоря. Этот способ состоит в том, что сердечники главных полю­сов делают из листовой анизотропной (холоднокатаной) стали (обычно применяют сталь марки 3411). Эта сталь в направлении проката обладает повышенной магнитной проницаемостью, а «поперек проката» — небольшой магнитной проницаемостью. Штамповать пластины полюсов из такой стали следует так, что­бы ось полюса совпадала с направлением проката листа стали. § 26.5. Способы возбуждения машин постоянного тока

Для работы электрической машины необходимо наличие маг­нитного поля. В большинстве машин постоянного тока это поле создается обмоткой возбуждения, питаемой постоянным током. Свойства машин постоянного тока в значительной степени опре­деляются способом включения обмотки возбуждения, т. е. способом возбуждения.

По способам возбуждения машины постоянного тока можно классифицировать следующим образом:

машины независимого возбуждения, в кото­рых обмотка возбуждения (ОВ) питается постоянным током от источника, электрически не связанного с обмоткой якоря (рис. 26.8, а);

машины параллельного возбуждения, в ко­торых обмотка возбуждения и обмотка якоря соединены парал­лельно (рис. 26.8, б) ;

машины последовательного возбуждения, в которых обмотка возбуждения и обмотка якоря соединены последовательно (рис. 26.8, в);

машины смешанного возбуждения, в которых имеются две обмотки возбуждения — параллельная ОВ1 и после­довательная ОВ2 (рис. 26.8, г);

26 устранение вредного влияния реакции якоря в машине постоянного тока

Рис. 26.8. Способы возбуждения машин постоянного тока

машины с возбуждением постоянными маг­нитами (рис. 26.8, д Все указанные ма­шины (кроме послед­них) относятся к маши­нам с электромаг­нитным возбуж­дением, так как маг­нитное поле в них созда­ется электрическим то­ком, проходящим в об­мотке возбуждения.

Начала и концы об­моток машин постоянного тока согласно

ГОСТу обозначаются: обмотка якоря — Я1 и Я2, обмотка добавоч­ных полюсов — Д1 и Д2, компенсационная обмотка — К1 и К2, об­мотка возбуждения независимая — Ml и М2, обмотка возбужде­ния параллельная (шунтовая) — Ш1 и 1112, обмотка возбуждения последовательная (сериесная) —С1 и С2.
Контрольные вопросы

Какие участки содержит магнитная цепь машины постоянного тока?

В чем сущность явления реакции якоря машины постоянного тока?

Почему МДС якоря, действующая по поперечной оси, вызывает размагничи­вание машины по продольной оси?

Как учитывается размагничивающее действие реакции якоря при расчете чис­ла витков полюсной катушки обмотки возбуждения?

С какой целью компенсационную обмотку включают последовательно с об­моткой якоря?

Почему с увеличением воздушного зазора ослабляется размагничивающее влияние реакции якоря?

Какие способы возбуждения применяют в машинах постоянного тока?

Источник

Сдвиг щёток с нейтрали

26 устранение вредного влияния реакции якоря в машине постоянного тока 26 устранение вредного влияния реакции якоря в машине постоянного тока 26 устранение вредного влияния реакции якоря в машине постоянного тока 26 устранение вредного влияния реакции якоря в машине постоянного тока

26 устранение вредного влияния реакции якоря в машине постоянного тока

26 устранение вредного влияния реакции якоря в машине постоянного тока

Методы компенсации влияния реакции якоря

Вредные последствия реакции якоря.

1. Смещение физической нейтрали

26 устранение вредного влияния реакции якоря в машине постоянного токаРис.1

В генераторах физическая нейтраль смещается по направлению вращения якоря, в двигателях — против направления вращения. Это ухудшает коммутацию машины, т. е. способствует возникновению искрения под щетками.

2. Результирующий магнитный поток машины Фрез при насыщении магнитной цепи уменьшается, т. е. уменьшается и э. д. с. E, индуцированная при нагрузке, по сравнению с э. д. с. Е0 при холостом ходе. Хотя уменьшение магнитного потока под действием м. д. с. якоря обычно невелико и составляет всего 1—3 %, это существенно сказывается на характеристиках генераторов постоянного тока и приводит к уменьшению э. д. с. Е машины при нагрузке по сравнению с э. д. с. Е0 при холостом ходе.

3. В кривой распределения результирующей индукции в воздушном зазоре (см. рис. 106, в) возникают пики индукции Вмах под краями главных полюсов, способствующие, что ещё больше ухудшает коммутацию машины и способствует образованию в машине кругового огня.

Реакция якоря неблагоприятно влияет на рабочие свойства машины постоянного тока, поэтому при проектировании машины принимают меры к устранению или ослаблению ее влияния.

Устранение вредных последствий реакции якоря.

Увеличение воздушного зазора под главными полюсами. В машинах малой и средней мощности, не имеющих компенсационной обмотки, вредное влияние реакции якоря по поперечной оси ослабляют соответствующим выбором воздушного зазора под главными полюсами. Некоторое увеличение воздушного зазора под главными полюсами, особенно на их краях (рис.2), значительно ослабляет действие реакции якоря. Однако не следует забывать, что увеличение воз­душного зазора ведет к необходимости повышения МДС обмотки главных полюсов, а следовательно, и к увеличению размеров полюсных катушек, полюсов и габарита машины в целом.

26 устранение вредного влияния реакции якоря в машине постоянного токаРис.2

Использование анизотропной электротехнической стали. Сердечники главных полюсов делают из листовой анизотропной (холоднокатаной) стали (обычно марки 3411). Пластины полюсов из такой стали штампуют так, чтобы ось полюса совпадала с направлением проката листа стали.

Компенсация влияния реакции якоря увеличением потока возбуждения

Устранить уменьшение потока возбуждения, вызванное влиянием реакции якоря, можно усилением потока возбуждения при нагрузке. Для этого применяют сдвиг щёток с нейтрали или используют стабилизирующую обмотку. Способ не устраняет искажения магнитного поля в зазоре машины.

Сдвиг щёток с нейтрали

Щётки могут быть преднамеренно или случайно сдвинуты с нейтрали на какой-то угол. На рис. 3 показан генератор, у которого щетки сдвинуты по направлению вращения на угол β. В соответствии с этим МДС якоря также поворачивается на угол β, в ту же сторону.

26 устранение вредного влияния реакции якоря в машине постоянного тока

Рис.3 Сдвиг щёток с нейтрали

МДС якоря Fa можно разложить на две составляющие:

— поперечную Faq, направленную по геометрической нейтрали,

— продольную Fad, направленную по оси главных полюсов,

Продольная составляющая МДС якоря (щетки смещены по направлению вращения ротора генератора) направлена против МДС обмотки возбуждения, т. е. действует размагничивающе. При смещении щёток против вращения ротора генератора продольная составляющая МДС якоря усиливает магнитный поток. В последнем случае продольная реакция якоря может использоваться для компенсации уменьшения магнитного потока при нагрузке в генераторном режиме. В двигательном режиме направление токов в якоре меняется на обратное, меняется и направление продольной реакции якоря. Поэтому, для компенсации реакции якоря в двигательном режиме, щётки надо смещать в противоположную сторону. Метод прост, применяется в машинах малой мощности до нескольких киловатт.

Стабилизирующая обмотка это небольшая дополнительная обмотка последовательного возбуждения, которая располагается либо у полюсного наконечника, либо между секциями катушек 2 (Рис.4) главных полюсов, при этом она одновременно выполняет роль дистанционной прокладки.

26 устранение вредного влияния реакции якоря в машине постоянного токаРис.4

Стабилизирующая обмотка подключена последовательно цепи якоря, поэтому возрастающий ток в цепи якоря протекая через стабилизирующую обмотку вызывает усиление магнитного потока. Ток обмотки наводит магнитный поток, который стабилизирует магнитный поток возбуждения при нагрузке. Ток стабилизирующей обмотки меняет направление при переходе машины из двигательного в генераторный режим, поэтому при смене режима полярность стабилизирующей обмотки надо менять. Применяется в машинах средней мощности.

26 устранение вредного влияния реакции якоря в машине постоянного тока

Полностью скомпенсировать все проявления реакции якоря можно спомощью компенсационной обмотки. Ею снабжают крупные машины постоянного тока, в частности генераторы тепловозов и тяговые двигатели мощных электровозов переменного и постоянного тока.

26 устранение вредного влияния реакции якоря в машине постоянного тока

26 устранение вредного влияния реакции якоря в машине постоянного тока

Рис.5 Компенсационную обмотка

Компенсационную обмотку укладывают в пазы полюсных наконечников и включают последовательно с обмоткой якоря таким образом, чтобы МДС компенсационной обмотки 26 устранение вредного влияния реакции якоря в машине постоянного токабыла противоположна по направлению МДС обмотки якоря 26 устранение вредного влияния реакции якоря в машине постоянного тока.

Компенсационную обмотку включают таким образом, чтобы поток Фк, создаваемый ею, был направлен, против потока якоря Фя. При условии равенства м. д. с. этих обмоток FK = Fя происходит полная компенсация поперечного потока якоря и устраняются все вызываемые им вредные последствия. Компенсационную обмотку включают последовательно с обмоткой якоря, что обеспечивает компенсацию потока якоря при любой нагрузке машины. При увеличении тока якоря возрастает поток якоря Фя, но одновременно увеличивается и поток компенсационной обмотки, вследствие чего результирующий поперечный поток машины Фп = Фя— Фк = 0. Компенсационные обмотки применяют лишь в машинах средней и большой мощности – более 150-500 кВт при напряжении более 400 В, работающих с резкими колебаниями нагрузки, т.к. она удорожает и усложняет машину.

Источник

Вопрос 6. Реакция якоря машины постоянного тока. Магнитное поле при нагрузке. Влияние реакции якоря на работу машин и ее устранение.

При работе электродвигателя магнитное поле якоря действует на магнитное поле полюсов. Следовательно, у двигателей, так же как и у генераторов, наблюдается реакция якоря. При одном и том же направлении тока в обмотке якоря и той же полярности полюсов направление вращения двигателя обратно направлению вращения генератора.

При нагрузке машины в обмотке якоря протекает ток, который создает свое магнитное иоле. Поле якоря, воздействуя на магнитное поле полюсов, изменяет и искажает его. При нагрузке машины по магнитной цепи замкнется результирующий магнитный потом Фр, создаваемый совместным действием намагничивающих сил по­люсов и якоря. Результирующий магнитный поток Фр не равен потоку полюсов Фт, созданному намагничивающими силами обмотки возбуждения при холостом ходе. Воздействие поля, созданного током в якоре при нагрузке машины, на магнитное поле полюсов называется реакцией якоря.

Реакция якоря искажает магнитное поле машины, делает его несимметричным относительно оси полюсов.

Вопрос 46. Пусковые свойства асинхронных двигателей. Пуск двигателя с фазным ротором. Схема и процесс пуска.Пусковые свойства двигателя определяются в первую очередь значением пускового тока Iп или его кратностью Iп/ Iном и значением пускового момента Мп или его кратностью Мпном. Двигатель, обла­дающий хорошими пусковыми свойствами, развива­ет значительный пусковой момент при сравнительно небольшом пусковом токе. Однако получение такого сочетания пусковых параметров в асинхронном дви­гателе сопряжено с определенными трудностями. В начальный момент пуска скольжение s = 1, по­этому, пренебрегая током х.х., пусковой ток можно определить подставив s = 1:

Iп = U1/ 26 устранение вредного влияния реакции якоря в машине постоянного тока.

Пусковой момент по

Mп = 26 устранение вредного влияния реакции якоря в машине постоянного тока

Улучшить пуско­вые свойства двигателя можно увеличением актив­ного сопротивления цепи ротора r2‘, так как в этом случае уменьшение пускового тока сопровождается увеличением пускового момента. В то же время на­пряжение U1 по-разному влияет на пусковые пара­метры двигателя: с уменьшением U1 пусковой ток уменьшается, что благоприятно влияет на пусковые свойства двигателя, но одновременно уменьшается пусковой момент. Целесообразность применения того или иного способа улучшения пусковых свойств двигателя определяется конкретными условиями эксплуатации двигателя и требованиями, которые предъявляются к его пусковым свойствам. Помимо пусковых значений тока Iп и момента Мп пусковые свойства двигателей оцениваются еще и такими показателями: продолжительность и плавность пуска, сложность пусковой опе­рации, ее экономичность (стои­мость и надежность пусковой ап­паратуры и потерь энергии в ней). Пуск двигателя с фазным ротором. Наличие контактных колец у двигателей с фазным ро­тором позволяет подключить к обмотке ротора пусковой реостат. При этом активное сопро­тивление цепи ротора увеличива­ется до значения R2 = r2‘ + rд‘, где rд‘ — электрическое сопротивление пускового реостата, приве­денное к обмотке статора. При выборе сопротивления пускового реостата rдоб исходят из условий пуска двигателя: если двигатель включают при значи­тельном нагрузочном моменте на валу, сопротивление пускового реостата rдо6 выбирают таким, чтобы обеспечить наибольший пус­ковой момент; если же двигатель включают при небольшом нагрузочном моменте на валу, когда пусковой момент не имеет решающего значения для пуска, оказы­вается целесообразным сопротивление ПР rдоб выбирать несколько больше значения, соответствующего наибольшему пусковому мо­менту. В этом случае пусковой момент оказывается несколько меньшим наибольшего значения М п.mах, но зато пусковой ток значительно уменьшается.

Вопрос 48. Короткозамкнутые АД с улучшенными пусковыми характеристиками. Двигатель с глубокими пазами пазами на роторе и с двумя клетками на роторе. Конструкция, принцип действия, достоинства и недостатки. Двигатель с глубокими пазами на роторе. От обычного асинхронного двигателя этот двигатель отличается тем, что у него пазы ротора сделаны в виде узких глубоких щелей, в которые уложены стержни обмотки ротора, представляющие собой узкие полосы. С обеих сторон эти стержни приварены к замыкающим кольцам. Обычно глубокий паз имеет соотношение размеров hп/ bп = 9÷10, где hп, bп — высота и ширина паза.

В момент включения двигателя, когда частота тока в роторе имеет наибольшее значение (f2 = f1), индуктивное сопротивление нижней части каждого стержня значительно больше верхней. Объясняется это тем, что нижняя часть стержня сцеплена с большим числом магнитных силовых линий поля рассеяния. Почти весь ток ротора проходит по верхней части стержня, поперечное сечение которой намного меньше сечения всего стержня. Это равноценно увеличению активного сопротивления стержня ротора, что, как известно, способствует росту пускового момента двигателя и некоторому ограни­чению пускового тока. Таким образом, двигатель с глубокими пазами на роторе об­ладает благоприятным соотношением пусковых параметров: большим пусковым моментом при сравнительно небольшом пус­ковом токе.

Двигатель с двумя клетками на роторе.Еще лучшими пусковыми свойствами обладают асинхронные двигатели с двумя короткозамкнутыми клетками на роторе: рабочей клеткой 1, стержни которой расположены в ниж­нем слое, и пусковой клеткой 2, стержни которой расположены в верхнем слое, ближе к воздушному зазору. В момент пуска двигателя ток ротора проходит в основном по верхней (пусковой) клетке, обладающей малым индуктивным со­противлением. При этом плотность тока в стержнях пусковой клетки намного больше плотности тока в стержнях рабочей клетки. Повышенное активное сопротивление этой клетки обеспечивает двигателю значитель­ный пусковой момент при пони­женном пусковом токе. По мере увеличения частоты вращения ро­тора уменьшается частота тока в роторе, при этом индуктивное со­противление рабочей клетки уменьшается, и распределение плотности тока в стержнях пусковой и рабо­чей клеток становится почти оди­наковым. В итоге происходит пере­распределение вращающего момента между клетками: если в начальный период пуска момент создается главным образом токами пусковой клетки, то по окончании периода пуска вращающий момент создается в основном токами рабочей клетки. Максимальное значение момента пусковой клетки вследствие ее повышенного активного сопротивления смещено в сторону скольжений, близких к единице. Вращающие моменты от обеих клеток направлены в одну сторону, поэтому результирующий момент двигателя равен сумме моментов пусковой Мпк и рабочей Мраб.к клеток М = Мп.к + Мраб.к Двигатели с двумя клетками на роторе по сравнению с асин­хронными двигателями обычной конструкции имеют повышенную стоимость, что объясняется сложностью конструкции.

Вопрос47. Пуск асинхронных двигателей с короткозамкнутым ротором. Различные способы пуска, их схемы, достоинства и недостатки.Пуск непосредственным включением в сеть. Этот способ пуска, отличаясь простотой, имеет существенный не­достаток: в момент подключения двигателя к сети в обмотке ста­тора возникает большой пусковой ток, в 5—7 раз превышающий номинальный ток двигателя. При небольшой инерционности ис­полнительного механизма частота вращения двигателя быстро достигает установившегося значения и пусковой ток также быстро спадает, не вызывая перегрева обмотки статора. Но такой значи­тельный бросок тока в питающей сети может вызвать в ней замет­ное падение напряжения. Однако этот способ пуска благодаря своей простоте получил наибольшее применение для двигателей мощностью до 38—50 кВт и более (при достаточном сечении жил токоподводящего кабеля). При необходимости уменьшения пуско­вого тока двигателя применяют какой-либо из способов пуска короткозамкнутых двигателей при пониженном напряжении.

Пуск при пониженном напряжении. Пусковой ток двигателя пропорционален подведенному напряже­нию U1, уменьшение которого вызывает соответствующее умень­шение пускового тока.

Регулирование частоты вращения изменением скольжения sвозможно тремя способами: изменением подводимого к обмотке статора напряжения, нарушением симметрии этого напряжения и изменением активного сопротивления обмотки ротора. Регулировка частоты вращения изменением скольжения про­исходит только в нагруженном двигателе. В режиме холостого хода скольжение, а следовательно, и частота вращения остаются практически неизменными. Регулирование частоты вращения изменением частоты тока в статоре.Этот способ регулирования (частотное регулирование) ос­нован на изменении синхронной частоты вращения n1 = f1 60/ р. Для осуществления этого способа регулирования необходим источник питания двигателя переменным током с регулируемой частотой. В качестве таких источников могут применяться преобразователи частоты (ПЧ). Чтобы регулировать частоту вращения, достаточно изменить частоту тока f1. Но с изменением частоты f1 = ω1p/ (2π) будет изменяться и максимальный момент. Поэтому для сохранения неизменным перегрузочной способности, необходимо одно­временно с изменением частоты f1 изменять и напряжение питания U1. Подводимое к двигателю напряжение необходимо изменять пропорционально изменению частоты тока.Частотное регулирование двигателей позволяет плавно изме­нять частоту вращения в широком диапазоне (до 12:1). Регулирование частоты вращения изменением числа полюсов обмотки статора. Частота вращения ротора асинхронного двигателя обратно пропорциональна количеству пар полюсов. Количество пар полю­сов не может быть дробным числом, поэтому регулирование — ступенчатое. Изменение числа пар полюсов можно получить укладкой в пазы статора не одной, а двух обмоток. В зависимости от того, какая обмотка работает, такая и частота вращения. Недостаток такого способа — плохое использование обмоточного провода, по тому что всегда работает только одна обмотка. Также изменение числа пар полюсов можно получить ис­пользованием обычной обмотки путем переключения катушечных групп. Многоскоростные двигатели имеют недостатки: Большие габариты и масса.

Вопрос 51. Однофазный двигатель с экранированными полюсами. Устройство, принцип действия, основные характеристики.Для создания пускового момента в асинхронных двигателях малой мощности применяют конструкцию с явно выраженными экранированными полюсами, на которых располагают однофазную обмотку. Полюсыимеют расщепленную на две части конструкцию, при этом на одну из частей каждого полюса надет короткозамкнутый виток (экран) в виде медного кольца. Ротор двигателя короткозамкнутый. При включении обмотки статора в сеть пульсирующий поток наводит в короткозамкнутом витке (экране) ток, препятствующий нарастанию магнитного потока и вызывающий фазовый сдвиг по­тока в этой части полюса. В результате потоки в обеих частях каждого полюса оказываются сдвинутыми по фазе относительно друг друга, что, в свою очередь, приводит к образо­ванию в двигателе вращающегося магнитного поля. Часто для улучшения пусковых и рабочих характеристик двигателя между полюсами помещают магнитные шунты в виде стальных пласти­нок, замыкающих края полюсных наконечников полюсов статора.Асинхронные двигатели с экранированными полюсами нере­версивны — ротор всегда вращается в направлении от неэкрани­рованной части полюса к экранированной. Обычно эти двигатели изготовляют мощностью не более 100 Вт и применяют для привода устройств, не требующих большого пускового момента (элек­тропривод вентиляторов, электропроигрывателей и т. п.)Недостатки: большие габариты, небольшой пусковой момент, малый коэффициент мощности, невысокий КПД, отсутствие реверса.

Вопрос 52. Трехфазный АД в режиме однофазного. Схемы включения, расчет и выбор конденсатора.В этом случае трехфазный двигатель используют как конденсаторный, включив его по одной из схем. Величину рабочей емкости Сраб (мкФ) при промышленной часто­те (50 Гц) можно ориентировочно определить по одной из эмпири­ческих формул:

При подборе рабочей емкости необходимо следить за тем, чтобы величина тока в обмотке статора при установившемся режиме работы с требуемой нагрузкой на валу не превышала номинального значения, указанного в паспорте двигателя. Если пуск двигателя осуществляет­ся вхолостую или с небольшой нагрузкой на валу, то пусковая емкость не требуется. Если же двигатель пускается в ход со значи­тельной нагрузкой на валу, то пусковая емкость Спуск необходима. Величину этой емкости принимают Спуск = (2,5 3) Сраб. В этом случае пусковой момент двигателя становится близким к номиналь­ному. При необходимости дальнейшего увеличения пускового момен­та емкость Спуск следует увеличить до (6ч-8) Сраб. При использовании трехфазного двигателя в однофазном конден­саторном режиме (рис. 23.7) его полезная мощность не превышает 70 — 80% номинальной мощности при его работе от трехфазной се­ти, а при однофазном режиме с отключением одной фазной обмотки (без ФЭ) полезная мощность двига­теля не превышает 60% от мощ­ности в трехфазном режиме.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *