a si tft lcd что за матрица

Виды жидкокристаллических матриц, их отличия и особенности

История открытия жидких кристаллов

Впервые жидкие кристаллы были обнаружены в 1888 году австрийским ботаником Фридрихом Райнитцером в ходе исследования холестеринов в растениях. Он выделил вещество, имеющее кристаллическую структуру, но при этом странно ведущее себя при нагреве. При достижении 145.5°C вещество мутнело и становилось текучим, но при этом сохраняло кристаллическую структуру вплоть до 178.5°C, когда, наконец, превращалось в жидкость. Райнитцер сообщил о необычном явлении своему коллеге – немецкому физику Отто Леманну, который выявил ещё одно необычное качество вещества: эта псевдожидкость в электромагнитных и оптических свойствах проявляла себя как кристалл. Именно Леманн и дал название одной из ключевых технологий отображения информации на сегодняшний день – «жидкий кристалл».

Технический словарь разъясняет термин «жидкий кристалл» как мезофазу, переходное состояние вещества между твёрдым и изотропным жидким. В этой фазе вещество сохраняет кристаллический порядок расположения молекул, но при этом обладает значительной текучестью и стабильностью в широком диапазоне температур.

Почти столетие это открытие относилось к рангу удивительных особенностей природы, пока в 70-х годах ХХ века компания Radio Corporation of America не представила первый работающий монохромный экран на жидких кристаллах. Вскоре после этого технология начала проникать на рынок потребительской электроники, в частности, наручных часов и калькуляторов. Однако до появления цветных экранов было ещё очень далеко.

Принцип работы жидкокристаллических экранов

Работа жидкокристаллических матриц основана на таком свойстве света, как поляризация. Обычный свет является неполяризованным, т.е. амплитуды его волн лежат в огромном множестве плоскостей. Однако существуют вещества, способные пропускать свет только с одной плоскости. Эти вещества называют поляризаторами, поскольку прошедший сквозь них свет становится поляризованным только в одной плоскости.

Если взять два поляризатора, плоскости поляризации которых расположены под углом 90° друг к другу, свет через них пройти не сможет. Если же расположить между ними что-то, что сможет повернуть вектор поляризации света на нужный угол, мы получим возможность управлять яркостью свечения, гасить и зажигать свет так, как нам хочется. Таков, если описывать вкратце, принцип работы ЖК-матрицы. Конкретную реализацию этого принципа в разных матрицах мы рассмотрим ниже.

В упрощенном виде матрица жидкокристаллического дисплея состоит из следующих частей:

В цветных матрицах каждый пиксель формируется из трёх цветных точек (красной, зелёной и синей), поэтому добавляется ещё и цветной фильтр. В каждый момент времени каждая из трёх ячеек матрицы, составляющих один пиксель, находится либо во включённом, либо в выключенном положении. Комбинируя их состояния, получаем оттенки цвета, а включая все одновременно – белый цвет.

Глобально матрицы делятся на пассивные (простые) и активные. В пассивных матрицах управление производится попиксельно, т.е. по порядку от ячейки к ячейке в строке. Проблемой, встающей при производстве ЖК-экранов по этой технологии, стало то, что при увеличении диагонали увеличиваются и длины проводников, по которым передаётся ток на каждый пиксель. Во-первых, пока будет изменён последний пиксель, первый успеет потерять заряд и погаснуть. Во-вторых, большая длина требует большего напряжения, что приводит к росту помех и наводок. Это резко ухудшает качество картинки и точность цветопередачи. Из-за этого пассивные матрицы применяются только там, где не нужны большая диагональ и высокая плотность отображения.

Для преодоления этой проблемы были разработаны активные матрицы. Основой стало изобретение технологии, известной всем по аббревиатуре TFT, что означает Thin Film Transistor – тонкоплёночный транзистор. Благодаря TFT, появилась возможность управлять каждым пикселем на экране отдельно. Это резко сокращает время реакции матрицы и делает возможными большие диагонали матриц. Транзисторы изолированы друг от друга и подведены к каждой ячейке матрицы. Они создают поле, когда им приказывает управляющая логика – драйвер матрицы. Для того, чтобы ячейка не потеряла заряд преждевременно, к ней добавляется небольшой конденсатор, который играет роль буферной ёмкости. С помощью этой технологии удалось радикально уменьшить время реакции отдельных ячеек матрицы.

Виды матриц

Различия между разными типами матриц обусловлены расположением жидких кристаллов и, как следствие, особенностями прохождения через них света.

TN+film

Кристаллы в TN-матрице

Первой и наиболее простой технологией производства матриц была технология TN (Twisted Nematic, скрученные нематические), представленная в далёком 1973 году. Особенностью нематических кристаллов является то, что они выстраиваются друг за другом, как солдаты в колонне. Организация их в матрице выглядит как спираль. Для этого на стеклянных подложках делаются специальные бороздки, благодаря которым первый кристалл в спирали всегда расположен в одной и той же плоскости. Следующие за ним кристаллы располагаются друг за другом по спирали, пока последний не укладывается в аналогичную бороздку на второй подложке, расположенную под углом 90° к первой. К каждому концу спирали подведены электроды, которые и влияют на расположение кристаллов созданием электрического поля. При отсутствии напряжения и поля кристаллы поворачивают ось поляризации света, прошедшего через первый поляризатор, на 90°, чтобы он оказался в одной плоскости со вторым поляризатором и беспрепятственно прошёл сквозь него. Так получается белый пиксель. Если подать напряжение на электроды, спираль начинает сжиматься. Максимальное значение напряжения соответствует такому положению, при котором кристаллы не поворачивают поляризованный свет, и он поглощается вторым поляризатором (чёрный пиксель). Для получения градаций (оттенков серого) напряжение варьируется, тогда кристаллы занимают такое положение, при котором свет проходит через фильтры неполностью.

Принцип работы ЖК-матриц на примере TN

Из-за особенностей TN чёткое формирование оттенков сильно затруднено, и по сей день цветопередача является их ахиллесовой пятой.

Проблемой первых TN-матриц были очень небольшие углы обзора, при которых ячейка была видна с нужным цветом. Поэтому была разработана специальная плёнка, которая накладывается сверху на матрицу и расширяет углы обзора. Технология стала называться TN+film. В этом исполнении она существует и по сей день. Разъясним её. Угол между нормалью фронта световой волны и углом директора молекул ЖК (так научно называются те самые бороздки) равен j. Интенсивность пропущенного через 2 поляризатора света равна sin2 j. С практической точки зрения эти построения означают, что при полностью включённом пикселе угол j составляет не более 30°, а интенсивность света меняется в пределах 10%. А вот в среднем положении при уровне серого 50% угол j составит 45°, а изменение интенсивности – примерно 90%. Естественно, вряд ли кого устроит то, что, пошевелившись на стуле, он увидит вместо красного цвета зелёный. Поэтому сверху на матрицу клеится плёнка, имеющая другое значение j, из-за чего изменение интенсивности при смене угла обзора уже не так заметно. Сегодняшние матрицы обеспечивают нормальное изображение при отклонении от центра примерно на 50-60° по горизонтали (угол обзора 100-120°), а вот с вертикальными углами дело обстоит хуже. При отклонении от центра по вертикали хотя бы на 30 градусов нижняя часть матрицы начинает светлеть, иногда появляются тёмные полосы и т.д.

Ещё одна особенность TN состоит в том, что положением пикселя по умолчанию (т.е. при отключённом токе на электродах) является белый цвет. При этом, если транзистор сгорает, мы получаем всегда ярко горящую точку на мониторе. А если учесть, что добиться абсолютно точного положения кристаллов невозможно, на TN-матрицах невозможно добиться и хорошего отображения чёрного цвета.

В связи с ограниченной скоростью пассивных матриц для уменьшения скорости реакции была разработана технология STN (Super Twisted Nematic). Смысл её заключается в том, что бороздки на стеклянных подложках, ориентирующие первый и последний кристалл, расположены под углом более 200° друг к другу, а не 90°, как в обычной TN. В таком случае переход между крайними состояниями резко ускоряется, однако становится крайне сложно управлять кристаллами в средних положениях. Более-менее стабильными они были при углах между бороздками около 210°. Однако без недостатков не обошлось и тут: при отклонении от центра ячейки белый свет становился либо грязно-жёлтым, либо голубоватым. Чтоб хоть как-то сгладить эту проблему, инженеры Sharp разработали DSTN – Dual-Scan Twisted Nematic. Суть технологии состоит в том, что экран делится на две части, каждая из которых управляется отдельно. Помимо увеличения скорости, преимуществом технологии было смягчение искажений цветов, а недостатком – большой вес и высокая стоимость.

Итак, выделим достоинства и недостатки матриц TN+film (во всех исполнениях) на сегодняшний день:

ПлюсыМинусы
высокая скорость переключения ячеекабсолютно низкое качество цветопередачи
низкая ценамалые углы обзора
низкая контрастность (соотношение между белым и чёрным)
низкая цена

К сожалению, подавляющее большинство производимых сегодня ЖК-мониторов самой ходовой диагонали 17” производится на базе TN+film из-за дешевизны технологии. В принципе, для нетребовательного к качеству изображения пользователя ничего страшного в этом нет, однако для работы с графикой придётся обратить взор на другие матрицы.

Источник

История ЖК-дисплеев с активной матрицей

В этом году появился первый тонкоплёночный транзистор (thin-film transistor, TFT), разработанный инженером RCA Полом Веймером — изобретателем, получившим множество патентов, связанных с технологией электронно-лучевых трубок. Его работа, вдохновлённая предыдущими инновациями, стала фундаментом, приведшим к созданию современной технологии производства дисплеев. RCA использовала изобретение в качестве основы технологии создания дисплеев на жидких кристаллах, которую в дальнейшем усовершенствовал её конкурент, компания Westinghouse.

a si tft lcd что за матрицаApple PowerBook G4 — прекрасный пример ЖК-дисплея с активной матрицей

Изобретение ЖК-дисплея с активной матрицей как образец истории изобретателей

В истории электроники не было сюжета прекрасней, чем рассказ об изобретателе (или группе изобретателей), разработавшем что-то великолепное, компания которого отказалась от его проекта из опасений, что оно не соответствует её потребностям.Вот несколько таких историй, ставших известными:

Дэвид Коллинз, новатор в истории штрихкода, многие годы работал в Sylvania над разработкой устройств для железнодорожных вагонов, но в конечном итоге компания отказалась от его идеи, поэтому он решил двигаться самостоятельно и добился огромного успеха.

Xerox Alto, один из первых примеров графического интерфейса пользователя, игнорировался компанией Xerox до начала 1980-х, когда один из посетителей Xerox PARC, руководитель Apple Стив Джобс, не позаимствовал его базовые концепции для Apple Lisa и Macintosh.

Kodak самостоятельно разработала множество базовых концепций цифровой камеры, но изобретателю Стиву Сассону сначала сказали отказаться от его идеи, и только потом Kodak с запозданием начала использовать устройство, изобретённое сотрудником компании.

Наша история будет похожей, только речь в ней идёт о том самом экране, на который, скорее всего, вы сейчас смотрите, особенно если он изготовлен по технологии ЖК-дисплеев.

a si tft lcd что за матрица

В 1970-х годах пара инженеров Westinghouse, Питер Броди и Фан Чэнь Ло, разработали первый ЖК-экран на активной матрице. Родившийся в Венгрии Броди заинтересовался новой экспериментальной технологией тонкоплёночных транзисторов, считавшейся потенциальным способом визуального отображения содержимого в более компактном, нежели ЭЛТ, виде.

В заявке на патент изобретатели подчеркнули, что технология реализуема, но требует другого технического базиса вместо кремния, который обычно используется в транзисторах.

«Уже очевидно, что твёрдотельные плоскопанельные дисплеи концептуально реализуемы», — утверждалось в заявке на патент. «Попытки использования для этого кремниевой технологии ограничены размером кремниевых пластин, что не позволяет создавать дисплеи большой площади».

Ничего особенного, просто несколько пикселей под микроскопом.

Поэтому вместо кремния авторы использовали тонкоплёночные транзисторы на стеклянной подложке, что позволило устройству быть прочным, но более тонким, и в то же время пропускать свет. Тонкая плёнка крепилась на слое изолятора с электродом, пропускающим напряжение по экрану. Устройство площадью около сорока квадратных сантиметров могло отображать объекты с разрешением 20 строк на дюйм. (Для сравнения: MacBook Air имеет разрешение примерно 227 строк на дюйм.)

Сегодня увидеть отдельные транзисторы на экране довольно сложно без, допустим, микроскопа, но в 1970-х это было очень легко, поэтому когда журнал «Time» писал об этом изобретении в 1974 году, то описал его как «похожий на бумагу-миллиметровку паттерн, имеющий 14400 точек пересечения».

a si tft lcd что за матрицаПитер Броди, сыгравший важную роль в развитии ЖК-панелей на активной матрице

Хотя разработчики признавали, что устройство было довольно грубым, а «разрешение позволяло отображать только силуэты букв, чисел и простых изображений», оно продемонстрировало потенциал плоских экранов, которые однажды заменят громоздкие ЭЛТ-дисплеи. В статье Time Броди сказал, что его скромное устройство является «вероятно, самой крупной в мире интегральной схемой», а не просто экраном.

Как указано в заявке на патент, это был не единственный тип тонкого экрана — например, существовала плазменная технология, получившая популярность в телевизорах в начале 2000-х; на её основе были созданы терминалы компьютерной системы PLATO, известные своим оранжевым оттенком изображения.

Но это стало только отправной точкой технологии, которая осталась с нами. К середине 1990-х цветные дисплеи с активной матрицей стали привычными для ноутбуков благодаря сочетанию ярких цветов и малой толщины. Однако несмотря на то, что концепция была придумана в отделе исследований и разработок американской компании и совершенствовалась другими компаниями, почти все панели даже на самом рассвете их популярности производились японскими изготовителями.

В чём же заключалась проблема? Разработанная Броди и Ло технология так и не получила развития в Westinghouse; частично это было вызвано тем, что компания постепенно уходила с рынка телевизоров, потому что столкнулась на нём со сложностями. Как писал в 1991 году MIT Technology Review, из-за быстрого развития ноутбуков с цветным экраном на компьютерном рынке Westinghouse в начале 1970-х прекратила продавать телевизоры и закрыла исследовательский отдел компании, позволивший Броди и его команде разработать устройство.

На самом деле, эксперименты Westinghouse с плоскопанельными ЖК-дисплеями завершились в 1970-х; то же самое произошло и с другими крупными американскими компаниями. «И крупные корпорации, и стартапы с венчурным капиталом уходили из этой области, обычно это было вызвано производственными сложностями», — писали Ричард Флорида и Дэвид Броуди.

Наблюдатели из Westinghouse, дававшие интервью Time, сказали, что технология была отличной, но разработчики часто пропускали дедлайны; Уильям Коутс, работавший в отделе потребительской электроники, сообщил, что в результате это оттолкнуло компанию от использования инновационной технологии.

«Мы постоянно не укладывались в графики и в бюджеты», — говорит он.

Из этого можно извлечь такой урок: если кто-то не справляется с управлением, но у него есть хорошая идея, то найдите ему менеджера получше.

Такое количество миллисекунд требуется для обновления экрана на пассивной матрице; для сравнения: согласно статье 1991 года в InfoWorld article, в то время экрану на активной матрице требовалось от 15 до 30 миллисекунд. На тот момент в ноутбуках постепенно набирали популярность дисплеи с пассивной матрицей, потому что низкокачественные экраны значительно снижали цену ноутбуков, стоивших тогда как подержанный автомобиль. Однако в статье утверждалось, что успех экранов с пассивной матрицей продлится недолго. «Даже самые упорные сторонники технологии цветных дисплеев с пассивной матрицей признают, что будущее цвета в портативных устройствах скорее всего будет связано с активной матрицей», — писали журналисты Лиза Пикарелле и Том Квинлан. «Как только масштабы производства TFT-дисплеев с активной матрицей станут выше, цены неминуемо начнут снижаться».

a si tft lcd что за матрицаПримеры первых компьютерных экранов 1980-х, представленные в статье Popular Science. В некоторых используются жидкие кристаллы; в других — плазма. Распространение цветных экранов началось только в 1990-х.

ЖК-панели в основном производились в Азии из-за нежелания крупных технологических компаний инвестировать в них

Изучая рост популярности ЖК-экранов с активной матрицей, я поразился схожести тенденций между ЖК и eInk. Часто электронные чернила становились решением в поисках задачи, которому не хватало инвестиций, чтобы попасть на мейнстримный рынок вне рынка электронных книг, на котором они медленно совершенствовались в течение многих лет.

Но для популярности eInk недоставало возможности отображения цветов, несмотря на множество попыток, например, при помощи технологий наподобие Mirasol; из-за этого им не удавалось привлечь внимание производителей, несмотря на серьёзные инвестиции крупных компаний.

С другой стороны, проблема ЖК-дисплеев с активной матрицей заключалась не столько в отсутствии интереса к продукту, сколько в нежелании больших компаний вкладываться в него.

В частности, это отразилось и в том, чем занялся Броди, когда Westinghouse навсегда отказалась от его разработок. Броди основал собственную компанию Panelvision, пытаясь развивать и поставить на коммерческие рельсы технологию активных матриц, которую в то время старались разрабатывать и другие компании. Технология активной матрицы имела ключевое преимущество перед многими другими типами дисплейных технологий, использовавшихся в то время в компьютерных экранах — широкие углы обзора. Низкокачественные ЖК-дисплеи, например, те, которые использовали технологии пассивной матрицы, сталкивались с проблемами низкого качества освещения и размытия, и их нельзя было использовать на улице.

«При увеличении количества строк возникает всё больше сложностей с адресацией каждого элемента, между ними возникает взаимное влияние», — объяснял Броди в статье 1985 года в Popular Science. «Другими словами, для активации ЖК-элементов нужно подать на строку достаточно сильный заряд, но не такой сильный, чтобы активировались соседние пиксели».

В статье Броди совершенно верно предсказывает, что при увеличении масштабов производства рынок ЖК-экранов будет становиться всё менее дорогим. Но существовала проблема — в конечном итоге, крупномасштабной разработкой этих технологий стала заниматься не компания Броди. Вскоре после интервью Popular Science его компания была продана, а сам он покинул её, и столкнулся с ещё большими сложностями поиска лиц, заинтересованных в его новой компании Magnascreen.

Частично это было вызвано тем, что появились мировые конкуренты, внедрявшие более мощные инновации. Например, Matsushita (теперь называющаяся Panasonic) и Hitachi в 1980-х начали активно инвестировать средства в собственные технологии TFT-панелей; кульминацией их исследований стала разработка в 1990-х технологии in-plane switching (IPS). Панели IPS используются в ноутбуках даже сегодня.

Но существовали и более обширные культурные проблемы, нанёсшие ущерб американским производителям TFT-дисплеев: как подчёркивается в статье 1991 года в MIT Technology Review, в процессе поиска инвестиций Броди столкнулся со множеством препятствий, потому что технологические компании хотели видеть в Panelvision поставщика, способного создать технологию для их устройств; они не хотели сложностей с инвестициями в разработку самой технологии. (Мешало и то, что Panelvision находилась в Питтсбурге, который из Кремниевой долины казался дальше, чем Япония.)

Эта проблема достаточно широко распространена — как говорится в статье в Electrochemical Society, многие исследовательские работы проводятся в западных странах, но производства в них не так много.

«Некоторые американские и европейские компании активно участвуют в исследованиях и разработках, внося большой вклад в понимание физики устройства и технологии процессов», — объясняет автор Юэ Ко. «Однако они построили очень мало заводов для крупномасштабного производства».

Частично это было вызвано тем, что создать качественный ЖК-дисплей было сложно (позже с подобными сложностями столкнулись и производители цветных eInk-дисплеев).

a si tft lcd что за матрицаПризнайтесь, сегодня вы считаете это чем-то само собой разумеющимся.

Однако японские компании без сомнений шли на подобные инвестиции, и в результате прежнее поколение крупных технологических компаний попросту уступила фундаментальную технологию другой части мира. Флорида и Броуди пишут:

К сожалению, опыт Magnascreen, Panelvision и Westinghouse неуникален. Как и Westinghouse, другие крупные компании (RCA, GE, Burroughs, IBM, Raytheon, Zenith, Hughes, Texas Instruments, NCR, AT&T и Exxon) взращивали технологии плоских дисплеев, а затем отказывались от них. Остатки работ Panelvision и Magnascreen стали причиной роста множества новых компаний: Plasma Graphics (дочерняя компания Burroughs), Electro-Plasma (Owens-Illinois) и кучи других, большинство из которых провалилось. Ни одна из них не добралась до стадии массового производства.

Неспособность корпораций США заработать на большом изначальном превосходстве в важной технологии позволила иностранным конкурентам их обойти. Сегодня в США нет крупных фабрик ЖК-дисплеев с активной матрицей. За последние несколько лет четыре японские корпорации — Hitachi, Matsushita, Seiko Epson и Sharp — инвестировали в такие заводы в своей стране больше ста миллионов долларов. Hoshiden делает экраны для портативных Macintosh. Sharp создаёт экраны для нового компьютера Texas Instruments в формате ноутбука. IBM недавно организовала совместное предприятие с Toshiba под названием Display Technologies Inc. для создания 10-дюймовых цветных дисплеев с активной матрицей для своих компьютеров в Японии.

Разумеется, изобретённые в одной стране технологии не обязаны в ней оставаться. На самом деле, глобализация чаще всего является благом, потому что её преимущества помогают всем.

Но странно, что потенциал этой фундаментальной технологии, которую вы скорее всего используете для чтения этой статьи, был, по сути, отвергнут целой страной из-за нежелания инвестировать в производство.

В этом году двое исследователей из Eastman Kodak, Чин Тан и Стивен Ван Слайк, разработали первый практичный органический светодиод (organic light-emitting diode, OLED), в котором использовались два слоя тонких органических компонентов для того, чтобы дисплей мог генерировать свет на уровне пикселей, а не благодаря подсветке. Эта технология, разработанная на основе инноваций, созданных десятки лет назад в таких организациях, как RCA, а позже усовершенствованных для обеспечения поддержки полноцветных экранов, стала ключевым элементом современных смартфонов и телевизоров верхнего ценового сегмента. (И в отличие от разработчиков ЖК-технологии с активной матрицей, Kodak сотрудничала с японской компанией Sanyo, однако позже Sanyo купила Kodak.)

Нежелание инвестировать в фабрики и производство помогло американским компаниям избежать естественного риска использования непроверенной технологии. Но в то же время это дало отдельной части мира контроль над процессом производства важнейших компонентов. И это означает, что если возникнут проблемы (как это недавно случилось с большим дефицитом компонентов чипов для дисплеев), такой контроль сделает нас более подверженными риску.

Фабрика по производству смарт-телевизоров в действии.

Очевидно, что я не хочу сказать, что люди, принимающие решения об инвестициях, думают именно так — в первую очередь они думают о собственных нуждах, а не о рынке в целом. Но это заставляет задуматься, как бы выглядела отрасль технологий, если бы её важнейший компонент не был так быстро отдан в руки единственной части мира. Вероятнее всего, мир выиграл бы от того, если бы дисплейные технологии разрабатывались и совершенствовались в разных местах.

По крайней мере, одно можно считать истинным — как справедливо предсказал Питер Броди сорок лет назад в начале статьи в Inc. о своём уходе из Westinghouse: «Электронно-лучевая трубка, подобно динозаврам, скоро вымрет, и причина этого будет такой же: слишком большая масса и слишком маленький мозг».

В этом он был абсолютно прав, и он оказался значительно прозорливее, чем считали его работодатели и инвесторы. Почему они не видели того, что видел он?

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *