алгоритмы машинного обучения книги
15 книг по машинному обучению для начинающих
Сделал подборку книг по Machine Learning для тех, кто хочет разобраться, что да как.
Добавляйте в закладки и делитесь с коллегами!
Книги по машинному обучению на русском
Сначала изучите азы статистической теории машинного обучения, игр с предсказаниями и прогнозирования с применением экспертной стратегии. Их основы прекрасно объясняет автор книги, доктор физико-математических наук Владимир Вьюгин. Пособие рассчитано на студентов и аспирантов и в доступной форме излагает математические основы, необходимые для дальнейшей работы с машинным обучением.
Книга, благодаря которой даже ничего не смыслящие в математике и статистике люди поймут, что такое алгоритмы машинного обучения и каково их применение в жизни. Профессор Педро Домингос рассказывает о пяти основных школах Machine Learning и о том, как они используют идеи из различных областей научного знания — нейробиологии, физики, статистики, биологии, — чтобы помогать людям решать сложные задачи и упрощать рутину с помощью алгоритмов.
3. «Машинное обучение» Хенрик Бринк, Джозеф Ричардс, Марк Феверолф.
Эта книга 2017 года издания доступно рассказывает о Machine Learning — для тех, кто ничего не слышал об этих технологиях. В ней нет заумной статистики, математики или углубленного и подробного объяснения, как использовать тот или иной алгоритм. Авторы с легкостью объясняют, что такое машинное обучение и как его применять в повседневной жизни. Примеры в книге приводятся на языке программирования Python, который используется в том числе и в этой сфере.
Еще одна отличная книга для начинающих свой путь в программировании и анализе больших данных. Авторы утверждают, что благодаря ей читатель научится самостоятельно строить модели машинного обучения и развертывать крупномасштабные приложения для прогнозирования. В книге рассказывается о том, какие алгоритмы входят в семейство масштабируемых, что они из себя представляют и как с их помощью обрабатывать большие файлы. Также вы узнаете, что такое вычислительная парадигма MapReduce и как работать с машинными алгоритмами на платформах Hadoop и Spark на языке Python.
Книга для новичков, осваивающих Python и машинное обучение. Издание содержит подробные мануалы даже по таким нюансам, как установка специализированного приложения Jupyter Notebook.
В книге рассматриваются основы Machine Learning, возможности самых мощных библиотек Python для анализа данных и дается ответ на вопрос, почему этот язык — один из лидеров в Data Science.
6. «Методы обработки и распознавания изображений лиц в задачах биометрии» Георгий Кухарев, Екатерина Каменская, Юрий Матвеев, Надежда Щеголева
Несмотря на то что эта книга рассчитана на начинающих и знакомит с основными принципами искусственного интеллекта — в частности, технологии распознавания лиц, — для полного понимания терминологии и комфортного погружения в чтение все же требуется некоторый бэкграунд. В ней рассматриваются такие вопросы биометрии, как методы анализа изображений лиц, получение исходных данных из реальных сцен, структуры систем распознавания и другие. Примеры в монографии приводятся на языке машинного обучения MATLAB. Если техническими фоновыми знаниями вы не обладаете, но книгу прочитать все же хочется — незнакомые термины можно гуглить, этого вполне достаточно, чтобы не испытывать при чтении никакого дискомфорта.
Это цветное издание с иллюстрациями также предназначено для новичков и рассматривает широкие вопросы машинного обучения. По мере погружения читателя в тему автор раскрывает все больше деталей, но книга не слишком сложна для восприятия: вся новая терминология объясняется, а статистические и логические модели описываются понятным неподготовленному читателю языком.
8. «Обучение с подкреплением» Ричард С. Саттон, Эндрю Г. Барто.
Обучение с подкреплением — это одно из направлений искусственного интеллекта. Кратко и в самом общем виде его суть можно изложить так: машина учится действовать в окружающей среде, нарабатывая интуитивный опыт, а затем наблюдает свои результаты. В книге исчерпывающе излагается концепция обучения с подкреплением — от основополагающих идей до современных достижений в этой сфере.
Книги по машинному обучению на английском
Все книги рассчитаны на новичков без опыта работы с технологиями искусственного интеллекта либо специалистов с небольшим техническим бэкграундом. Цель большинства — познакомить с основными принципами, концепциями, идеями и некоторыми алгоритмами машинного обучения.
Книга Дэвида Барбера написана для студентов и выпускников с минимальными знаниями алгебры и математического анализа — то есть отлично подходит для начала изучения машинного обучения. Как видно по названию, она сосредоточена вокруг байесовского статистического вывода. Книга позволяет развить аналитические навыки и найти новые способы решения проблем в работе с алгоритмами машинного обучения. Каждая глава сопровождается примерами, практическими и теоретическими заданиями.
О чем
Эта книга — не учебное пособие, сборник практических задач или теоретических изысканий. Это своеобразный «мостик» от теории к практике машинного обучения. С ее помощью читатель может подготовиться к дальнейшему изучению темы Machine Learning и науки о данных.
В этом пособии концептуально описываются идеи науки о данных, то есть без сложных математических формул и понятий. В ней множество иллюстративных примеров, которые еще больше раскрывают суть написанного. Охват книги широк: от контролируемого обучения (прогнозирования) до обучения без учителя. Рассматриваемые темы включают нейронные сети, методы опорных векторов, деревья классификации и бустинг. Авторы книги — преподающие профессора, создатели учебных пособий и инструментов интеллектуального анализа данных.
В этом издании обзорно излагаются основные современные подходы к проблемам классификации: машинное обучение, статистика и нейронные сети. Авторы сравнили эффективность методов по различным показателям и сделали выводы о том, для решения каких коммерческих и промышленных задач каждый из них больше подходит.
Преимущество книги — невысокие требования к фоновым математическим знаниям читателя. Даже со школьным курсом в голове вы сможете ее прочесть, понять, освоить основные концепции и научиться программировать собственные алгоритмы распознавания изображений на Python. Все математические идеи в основе устройства нейронных сетей поданы под соусом из большого количества иллюстраций и примеров, что упрощает восприятие.
Учебное пособие для студентов первого курса. Его часто используют в роли введения в Data Science во множестве обучающих университетских программ. Если вам интересно проектирование нейросетей именно для создания искусственного интеллекта, рекомендуем ее как первую книгу на эту тему.
15. «Learning From Data» Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Tien Lin.
Книга носит подзаголовок «A short course» и кратко знакомит читателя с основами машинного обучения. Если вы только начали вникать, что происходит в мире Data Science, и прочли несколько статей в интернете, то это идеальный вариант, чтобы разобраться в предмете чуть глубже.
15 книг по машинному обучению для начинающих
Хочешь больше книг по программированию?
Подпишись на наш канал и ознакамливайся бесплатно!
Подборку книг по машинному обучению для тех, кто хочет разобраться, что да как, опубликовал KV.BY.
Книги по машинному обучению на русском
1. Математические основы машинного обучения и прогнозирования
Автор — Владимир Вьюгин
Сначала изучите азы статистической теории машинного обучения, игр с предсказаниями и прогнозирования с применением экспертной стратегии. Их основы прекрасно объясняет автор книги, доктор физико-математических наук Владимир Вьюгин. Пособие рассчитано на студентов и аспирантов и в доступной форме излагает математические основы, необходимые для дальнейшей работы с машинным обучением.
2. Верховный алгоритм
Автор — Педро Домингос
Книга, благодаря которой даже ничего не смыслящие в математике и статистике люди поймут, что такое алгоритмы машинного обучения и каково их применение в жизни. Профессор Педро Домингос рассказывает о пяти основных школах Machine Learning и о том, как они используют идеи из различных областей научного знания — нейробиологии, физики, статистики, биологии, — чтобы помогать людям решать сложные задачи и упрощать рутину с помощью алгоритмов.
3. Машинное обучение
Авторы — Хенрик Бринк, Джозеф Ричардс, Марк Феверолф
Эта книга 2017 года издания доступно рассказывает о Machine Learning — для тех, кто ничего не слышал об этих технологиях. В ней нет заумной статистики, математики или углубленного и подробного объяснения, как использовать тот или иной алгоритм. Авторы с легкостью объясняют, что такое машинное обучение и как его применять в повседневной жизни. Примеры в книге приводятся на языке программирования Python, который используется в том числе и в этой сфере.
4. Крупномасштабное машинное обучение вместе с Python
Авторы — Бастиан Шарден, Лука Массарон, Альберто Боскетти
Еще одна отличная книга для начинающих свой путь в программировании и анализе больших данных. Авторы утверждают, что благодаря ей читатель научится самостоятельно строить модели машинного обучения и развертывать крупномасштабные приложения для прогнозирования. В книге рассказывается о том, какие алгоритмы входят в семейство масштабируемых, что они из себя представляют и как с их помощью обрабатывать большие файлы. Также вы узнаете, что такое вычислительная парадигма MapReduce и как работать с машинными алгоритмами на платформах Hadoop и Spark на языке Python.
5. Python и машинное обучение
Автор — Себастьян Рашка
Книга для новичков, осваивающих Python и машинное обучение. Издание содержит подробные мануалы даже по таким нюансам, как установка специализированного приложения Jupyter Notebook.
В книге рассматриваются основы Machine Learning, возможности самых мощных библиотек Python для анализа данных и дается ответ на вопрос, почему этот язык — один из лидеров в Data Science.
6. Методы обработки и распознавания изображений лиц в задачах биометрии
Авторы — Георгий Кухарев, Екатерина Каменская, Юрий Матвеев, Надежда Щеголева
Несмотря на то что эта книга рассчитана на начинающих и знакомит с основными принципами искусственного интеллекта — в частности, технологии распознавания лиц, — для полного понимания терминологии и комфортного погружения в чтение все же требуется некоторый бэкграунд. В ней рассматриваются такие вопросы биометрии, как методы анализа изображений лиц, получение исходных данных из реальных сцен, структуры систем распознавания и другие. Примеры в монографии приводятся на языке машинного обучения MATLAB. Если техническими фоновыми знаниями вы не обладаете, но книгу прочитать все же хочется — незнакомые термины можно гуглить, этого вполне достаточно, чтобы не испытывать при чтении никакого дискомфорта.
7. Машинное обучение
Это цветное издание с иллюстрациями также предназначено для новичков и рассматривает широкие вопросы машинного обучения. По мере погружения читателя в тему автор раскрывает все больше деталей, но книга не слишком сложна для восприятия: вся новая терминология объясняется, а статистические и логические модели описываются понятным неподготовленному читателю языком.
8. Обучение с подкреплением
Авторы — Ричард С. Саттон, Эндрю Г. Барто
Обучение с подкреплением — это одно из направлений искусственного интеллекта. Кратко и в самом общем виде его суть можно изложить так: машина учится действовать в окружающей среде, нарабатывая интуитивный опыт, а затем наблюдает свои результаты. В книге исчерпывающе излагается концепция обучения с подкреплением — от основополагающих идей до современных достижений в этой сфере.
Книги по машинному обучению на английском
Все книги рассчитаны на новичков без опыта работы с технологиями искусственного интеллекта либо специалистов с небольшим техническим бэкграундом. Цель большинства — познакомить с основными принципами, концепциями, идеями и некоторыми алгоритмами машинного обучения.
9. Bayesian Reasoning and Machine Learning
Автор — David Barber
Книга Дэвида Барбера написана для студентов и выпускников с минимальными знаниями алгебры и математического анализа — то есть отлично подходит для начала изучения машинного обучения. Как видно по названию, она сосредоточена вокруг байесовского статистического вывода. Книга позволяет развить аналитические навыки и найти новые способы решения проблем в работе с алгоритмами машинного обучения. Каждая глава сопровождается примерами, практическими и теоретическими заданиями.
10. Introduction to Machine Learning
Автор — Nils J. Nilsson
Эта книга — не учебное пособие, сборник практических задач или теоретических изысканий. Это своеобразный «мостик» от теории к практике машинного обучения. С ее помощью читатель может подготовиться к дальнейшему изучению темы Machine Learning и науки о данных.
11. The Elements of Statistical Learning
Авторы — Trevor Hastie, Robert Tibshirani, Jerome Friedman
В этом пособии концептуально описываются идеи науки о данных, то есть без сложных математических формул и понятий. В ней множество иллюстративных примеров, которые еще больше раскрывают суть написанного. Охват книги широк: от контролируемого обучения (прогнозирования) до обучения без учителя. Рассматриваемые темы включают нейронные сети, методы опорных векторов, деревья классификации и бустинг. Авторы книги — преподающие профессора, создатели учебных пособий и инструментов интеллектуального анализа данных.
12. Machine Learning
Авторы — D. Michie, D.J. Spiegelhalter, C.C. Taylor
В этом издании обзорно излагаются основные современные подходы к проблемам классификации: машинное обучение, статистика и нейронные сети. Авторы сравнили эффективность методов по различным показателям и сделали выводы о том, для решения каких коммерческих и промышленных задач каждый из них больше подходит.
13. Make Your Own Neural Network
Автор — Tariq Rashid
Преимущество книги — невысокие требования к фоновым математическим знаниям читателя. Даже со школьным курсом в голове вы сможете ее прочесть, понять, освоить основные концепции и научиться программировать собственные алгоритмы распознавания изображений на Python. Все математические идеи в основе устройства нейронных сетей поданы под соусом из большого количества иллюстраций и примеров, что упрощает восприятие.
14. Artificial Intelligence: A Modern Approach
Авторы — Stuart Russell, Peter Norvig
Учебное пособие для студентов первого курса. Его часто используют в роли введения в Data Science во множестве обучающих университетских программ. Если вам интересно проектирование нейросетей именно для создания искусственного интеллекта, рекомендуем ее как первую книгу на эту тему.
15. Learning From Data
Авторы — Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Tien Lin
Книга носит подзаголовок «A short course» и кратко знакомит читателя с основами машинного обучения. Если вы только начали вникать, что происходит в мире Data Science, и прочли несколько статей в интернете, то это идеальный вариант, чтобы разобраться в предмете чуть глубже.
15 книг по машинному обучению
Когда мы слышим «машинное обучение», то думаем про нейросети и искусственный интеллект. А есть ли что-то еще? Специально для тех, кто хочет копнуть поглубже, прийти к истокам и разобраться, что к чему — наша сегодняшняя подборка. Не пугайтесь, новинки тоже есть.
Skill level: I’m too young to die
В качестве разминочки первая часть подборки будет на русском, что для общего понимания вроде как пойдет (но это не точно). Если вы с первых строк видите, что это бабское чтиво, скролльте до следующего уровня.
Машинное обучение
Хенрик Бринк — специалист по обработке и анализу данных и разработчик программного обеспечения.
Джозеф Ричардс — старший научный сотрудник в области прикладной статистики и предсказательной аналитики.
Марк Феверолф — основатель и президент компании Numinary Data Science, специализирующейся в области управления данными и предсказательной аналитики.
Тем, кто только начинает, пригодятся главы с первой по пятую: там описаны процессы подготовки и исследования данных, моделирование и оценка моделей. Дальше практика и еще раз практика (шансы на получение таксистом чаевых, предсказание будущих рецензий на фильмы и еще много интересного). Плюс продвинутые темы: проектирование признаков и оптимизация.
Математические основы машинного обучения и прогнозирования
Владимир Вячеславович Вьюгин — доктор физико-математических наук.
Тем, кто хочет познакомиться с основами современной теории машинного обучения и теории игр с предсказаниями, лучше начать с этой книги. В первой части рассказывается об основах статистической теории машинного обучения. Во второй и третьей частях рассматриваются задачи в теоретико-игровой и сравнительной постановках: предсказания с использованием экспертных стратегий и игры с предсказаниями.
Верховный алгоритм
Педро Домингос — профессор Вашингтонского университета, ведущий эксперт по машинному обучению и искусственному интеллекту.
Автор знакомит читателей с пятью основными школами машинного обучения и показывает, как они используют идеи из нейробиологии, эволюционной биологии, физики и статистики, чтобы создавать алгоритмы, помогающие людям. Попутно профессор Домингос рассказывает об идее универсального самообучающегося алгоритма и о том, как он изменит жизнь человека, бизнес, науку и все общество.
The Elements of Statistical Learning. Data Mining, Inference and Prediction
Т. Хэсти, Р. Тибширани, Дж. Фридман
Эта книга представляет собой попытку объединить многие важные новые идеи в обучении и объяснить их в статистической структуре. Авторы подчеркивают методы и их концептуальные основы, а не их теоретические свойства. Эта книга понравится не только статистикам, но и исследователям, практикам в самых разных областях.
Machine Learning, Neural and Statistical Classification
D. Michie, D.J. Spiegelhalter, C.C. Taylor
Эта книга — современный обзор различных подходов к машинному обучению. Сравнивая эффективность направлений по разным показателям, авторы делают выводы об их применении к реальным проблемам, а также выделяют три основных подхода к исследованиям: статистический, машинное обучение и нейронная сеть.
Introduction to machine learning
Эта книга не является практическим пособием или сборником теоретических доказательств. Это — промежуточное звено между теорией и практикой. Основное внимание уделяется важным идеям машинного обучения. В книге рассмотрены важные темы машинного обучения с 1996 года. Цель книги — подготовить читателя к дальнейшему освоению этой темы.
Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных
Один из самых интересных учебников по машинному обучению. Автор рассказывает о методах построения моделей и алгоритмов. С первых страниц можно погрузиться в машинное обучение в действии без ненужных технических деталей. С каждой главой примеры становятся все сложнее и сложнее. В конце каждой части приводятся ссылки на дополнительную литературу с авторскими комментариями. Начав с основ, автор знакомит читателя с полезными фактами и подробно описывает методы машинного обучения.
Обучение с подкреплением
Ричард С. Саттон, Эндрю Г. Барто
Книга не о машинном обучение, а об одном из способов изучения. Обучение с подкреплением — метод, в ходе которого человек обучается, взаимодействуя с некоторой средой. Ричард Саттон и Эндрю Барто представляют отчет о ключевых идеях и алгоритмах такого обучения. Единственный необходимый навык для читателя — знакомство с элементарными понятиями вероятности.
Bayesian Reasoning and Machine Learning
Эта книга для более профессионального уровня. Она рассчитана на выпускников или студентов магистратуры. Информация последовательно распределена по ходу всей книги от легкого к сложному.
Skill level: Nightmare
Подборка выше была для розовощеких барышень, у которых на уме одни фарфоровые куколки, статные гусары с кручеными усами да витание в эмпиреях — именно так сказал наш технический директор. После чего сделал настоящую подборку, она на английском (и если это вас смущает, то нажмите вот сюда).
Neural Network Design
Martin T Hagan, Howard B Demuth, Mark H Beale, Orlando De Jesús
В книге вы найдете ясный и подробный обзор основных типов архитектуры нейросетей, узнаете все о методах и правилах их обучения, а также о применении на практике.
Deep Learning
Ian Goodfellow, Yoshua Bengio, Aaron Courville
Книга рассказывает о глубоком обучении — о том, как иерархия понятий позволяет искусственному интеллекту изучать сложные концепции, строя их из более простых. Илон Маск назвал Deep Learning единственной всеобъемлющей книгой по этому вопросу.
Neural Networks: A Systematic Introduction
Raul Rojas, J. Feldman
Все законы и модели, объединенные в общую теорию нейронных сетей, под одной обложкой — вот что представляет собой эта книга. В каждой главе куча примеров, иллюстраций и библиография.
Pattern Recognition and Machine Learning (Information Science and Statistics)
Christopher M. Bishop
Первый учебник по распознаванию образов, в основе которого лежит Байесовский подход. Предварительных знаний о распознавании образов не требуется, зато пригодится представление о многомерном анализе и основы линейной алгебры.
Make Your Own Neural Network
Очень годное и в то же время очень простое для понимание руководство по нейросетям. Здесь все буквально разжевали, а потом разложили по полочкам. К концу книги вы научитесь программировать на Python и сможете создать собственную нейросеть.
Mahout in Action
Sean Owen, Robin Anil, Robin Anil, Ellen Friedman
Ну вот, мы в конце подборки, а это ее альфа и омега — ведь терпение должно вознаграждаться. Mahout — это java-библиотека, и в книге есть куча примеров, как ее можно использовать для решения реальных задач.
Качайте, заказывайте, изучайте и применяйте. Лайкайте еще эту запись, делитесь и всё такое.