что предотвращает обратный ток крови по венам
phlebolog.pro
флеболог Дробязго С.В.
г. Москва, Большой Головин переулок, 4. Клиника КСТ
запись на прием: +7 (495) 114-51-51
Как работают здоровые вены.
Краткое содержание:
В этой главе рассказано о том, как кровь движется от сердца к нижним конечностям по артериям, и возвращается обратно по венам. Данный процесс называется циркуляция. Вы узнаете о нормальной работе венозной системы и ее нарушениях, которые приводят к отекам и трофическим изменениям кожи, таким как гиперпигментация (потемнение) кожи, микробная экзема и трофические язвы.
Введение:
Физиология/гемодинамика
Регуляция тока крови по сосудам осуществляется нервной, эндокринной системой, а также локальными вазоактивными веществами, вырабатываемыми в тканях. Такая сложная регуляция позволяет увеличивать или уменьшать кровоток в зависимости от потребностей организма, например, усиление кровотока в мышцах при физической нагрузке, и уменьшение в покое. За счет изменения тонуса сосудов кожи регулируется температура тела. Когда холодно, сосуды кожи сужаются, кровь перемещается ближе к центру тела, за счет этого механизма организм сохраняет тепло. Напротив, когда жарко, сосуды кожи расширяются и организм отдает больше тепла. Различные повреждения тела и травмы запускают процессы, в результате которых кровоток может увеличиваться или уменьшаться, например, в области ожога кожи или в зоне растяжения связок.
Стенки вен очень тонкие и податливые, поэтому венозная система может изменять свою емкость вмещая различное количество крови. Объем крови пропорционален давлению внутри вен. Когда количество крови в венах уменьшается или снижается ее давление на венозные стенки, вены спадаются как пустой надувной шарик. Когда же объем крови или давление ее на стенки вены возрастает, вены расширяются, подобно надутому воздушному шарику. Если давление в венах становится очень высоким, венозная стенка растягивается, увеличивается ее проницаемость и вена пропускает жидкость, которая устремляется в ткани. Так возникает отек.
Для поддержания нормальной циркуляции крови в организме очень важны следующие 4 компонента:
(2) Согласно законам физики, любая жидкость перемещается из зоны высокого давления в зону более низкого давления. Разница давления между различными зонами называется градиентом. В организме человека существуют такие зоны, благодаря этому кровь может перемещаться против силы гравитации. Например, давление в венах нижних конечностей выше чем в венах малого таза и брюшной полости, а в правых отделах сердца оно еще ниже и может быть даже отрицательным, поэтому венозная кровь и движется по направлению к сердцу. При некоторых заболеваниях легких и сердца, давление в его правых отделах может быть повышенным, это также может приводить к отекам.
(4) Большинство вен в организме человека снабжены клапанами, которые обеспечивают ток крови только в одном направлении. Для нормального функционирования венозной системы клапаны должны быть сохранными, то есть не поврежденными, правильно работающими. В результате сокращения мышц голени порция крови перемещается вверх по венам, клапаны пропускают кровь вверх, и тотчас закрываются. Они работают как ступеньки лестницы, благодаря чему кровь движется поступательно в направлении сердца
Работа «мышечно-венозной помпы» подобна насосу, прокачивающему кровь из нижних конечностей к сердцу. За счет множества клапанов, которыми снабжены вены нижних конечностей, кровь движется только в одном направлении: из более поверхностных слоев в глубокие и снизу вверх, по направлению к сердцу. (а) Когда мышцы сокращаются, кровь выдавливается из вен и движется вверх. (b) Когда мышцы расслабляются, клапаны захлопываются, предотвращая обратный ток крови.
Если венозный отток нарушается кратковременно, например после авиа перелета или длительной статической нагрузки, основным проявлением является отек, который полностью проходит за ночь. Если же венозный отек держится длительное время, месяцами, начинает изменяться кожа и подкожная клетчатка, может появиться уплотнение и потемнение в области голени, в последующем может присоединиться инфекция, рожистое воспаление, микробная экзема. Все это может привести к формированию длительно незаживающих трофических язв.
Заключение
Часто задаваемые вопросы
Почему мои ноги отекают?
Что делать если внезапно отекла одна нога?
В то время как симметричные отеки обеих нижних конечностей больше характерны для заболеваний сердца, легких или почек, то отек одной нижней конечности появляется чаще из-за проблем с самими венами. Если без каких-либо видимых причин внезапно отекла одна нога, следует немедленно обратиться к врачу чтобы не пропустить тромбоз глубоких вен.
Каковы причины неправильной работы вен?
Лечение во многом зависит от причины появления отеков. Как правило, возвышенное положение нижних конечностей ночью в сочетании с ношением компрессионного трикотажа днем позволяет устранить отек в большинстве случаев. Разумеется, если у Вас проблемы с сердцем или легкими, этих мероприятий явно недостаточно, необходимо лечение основного заболевания.
2.2. Механизмы венозного возврата по системе нижней полой вены.
Венозный возврат в вертикальном положении.
Переход человека в вертикальное положение сопровождается падением ударного объема падает на 40-50 %, сердечного выброса – на 30 %, частота сердечных сокращений увеличивается на 10-20 ударов в минуту. Причиной этих изменений является перераспределение объема крови из интраторакального сосудистого ложа в нижние конечности. При этом количество крови в сердце и легочном круге падает примерно до 25 % (Heyman F., Strid K., 1994).
Perko G. et al. (1995) c помощью электрического импеданса определяли изменения объемов жидкостей тела человека в различных его положениях. Увеличение электрического импеданса на уровне груди и уменьшение на уровне нижних конечностей при вставании соответствует перемещению около 80 % крови из внутригрудного вместилища в нижние конечности. Точка индифферентности сосудистого объема располагалась между пупком и гребнем подвздошной кости и была независима от активации мышечно-венозной помпы.
Исследования Vanhoutte P.M. (1991) позволили определить, что при вставании появляется большой гидростатический градиент. В брюшной полости увеличение венозного гидростатического давления выравнивается увеличенным тканевым давлением, создаваемым висцеральной оболочкой брюшины. Висцеральные вены располагаются в идеальной позиции для модуляции сосудистой емкости. В конечностях артериальное и венозное давления увеличиваются одинаково при гидростатической нагрузке, так как в движущей силе кровотока изменений не происходит.
Повышение давления в венах нижних конечностей имеет два следствия. Одним из них является увеличение капиллярного давления, вызывающее повышенную фильтрацию, другим – скопление крови в венозном русле. Аккумуляция крови в венах нижних конечностей ограничивается механическими свойствами венозной стенки и при помощи клапанов, которые, по мнению автора, «подразбивают» столб крови на сегменты. Давление внутри таких сегментов меньше, чем, если бы не было клапанов. В результате повышения венозного давления в нижних конечностях аккумулируется дополнительно несколько сот мл крови.
Механизмы компенсации венозного возврата в условиях ортостаза были изучены при пассивном наклоне с переходом в вертикальное положение. Венозное кровообращение регистрировалось с помощью эходопплерокардиографии у 30 здоровых добровольцев в 4 положениях: в лежачем на спине, и при 20, 40, 60 градусах вертикального наклона (Guazzi M. et al. 1995). В указанных уровнях наклона часть исследуемых (20 человек) находилась по 10 минут, другая (10 человек) – по 45 минут. При 20 градусах наклона частота сердечных сокращений, артериальное давление, конечно-диастолический и ударный объемы были устойчивы. Однако диастолическая площадь правого желудочка была уменьшена на 18 %, пиковые трансмитральные и транстрикуспидальные Е скорости правого и левого желудочков были снижены на 14% и 17%, соответственно, и Е/А скоростное пиковое отношение желудочков уменьшилось на 6% и 13%, соответственно. Различие в предсердно-желудочковом давлении было снижено с обеих сторон, апредсердный вклад в желудочковое заполнение сохранялся. Полученные результаты при 20 градусах вертикального наклона могут быть объяснены с позиции диастолической желудочковой взаимозависимости: правопредсердное давление и правожелудочковый объем уменьшаются в ответ на уменьшенный венозный возврат; уменьшение объема правого желудочка будет увеличивать левожелудочковую диастолическую растяжимость и уменьшать левопредсердное давление, облегчая в действительности заполнение желудочка. Сразу после наклона, легочный бассейн крови поддерживает левожелудочковое заполнение и выброс, что компенсирует немедленное уменьшение в правожелудочковом ударном объеме, благодаря чему сохраняется нормальный ударный объем правого желудочка, несмотря на сниженную преднагрузку. Таким образом, нормальное сердце способно к компенсации небольшого или умеренного уменьшения венозного возврата, главным образом, за счет гемодинамического урегулирования в сердце и легких. При более значительных уровнях ограничения венозного возврата (при 40% и 60% вертикального наклона) это урегулирование было недостаточно, и уменьшение ударного объема частично компенсировалось увеличением частоты сердечных сокращений без инотропного эффекта. Адаптивные ответы при тех же уровнях наклона при продолжительности 45 минут не становились истощенными у нормальных людей, и были сопоставимы с таковыми для 10 минутной продолжительности.
ВЕНОЗНЫЙ ВОЗВРАТ ПРИ ДВИЖЕНИИ
При движении во время езды на велосипеде объем крови в нижних конечностях уменьшается приблизительно на 30 %, в то время как конечно-диастолический объем сердца увеличивается на 10 %, легочный объем крови – на 20 %. При повышении нагрузки объем крови в нижних конечностях уменьшается еще больше (до 23 %), снижается объем крови в брюшной полости, особенно в селезенке (около 50 %), почках (около 25 %), печени (около 20 %), а легочный объем крови продолжал увеличиваться (до 50 %) (Flamm S.D., Taki J., Moore R. et al., 1990) Эти исследования показали, что нагрузка в вертикальном положении приводит к перераспределению крови от нижних конечностей и брюшных органов к сердцу и легким отчетливо коррелируя в динамическом процессе с потреблением кислорода. На основании полученных данных можно утверждать, что в этих условиях легкие могут действовать как гемодинамический буфер в течение периодов остро увеличенного венозного возврата.
При нагрузке сердце получает повышенный приток крови в результате действия, главным образом, мышечных насосов нижних конечностей и других групп мышц верхних конечностей, груди и живота (Linden R.J., 1995). Показатели гемодинамики при физической нагрузке изменяются следующим образом: частота сердечных сокращений увеличивается в 2,5 раза по сравнению с покоем, сердечный выброс увеличивается 5-6 раз, но ударный объем максимально повышается только вдвое. Прирост ударного объема возникает как из-за увеличения конечно-диастолического объема, который, в свою очередь может повышаться не более чем на 50 %, так и за счет снижения конечно-систолического объема также не более чем на 50 %. Ограничение увеличения размеров сердца и объемов его полостей является функционально выгодным и поддерживается 3-мя механизмами: закон Франка-Старлинга, повышенная активность симпатических нервов, увеличение частоты сердечных сокращений. В соответствии с законом Франка-Старлинга, повышенный приток крови к сердцу увеличивает конечно-диастолическое давление и объем желудочка, что растягивает мышечные волокна и приводит к повышенной силе сокращения и увеличению ударного объема. Увеличение активности влияния симпатических нервов на сердечную мышцу приводит к уменьшению конечно-систолического объема и увеличению ударного объема сердца. Наиболее важным механизмом, контролирующим размеры сердца при увеличении венозного возврата, является изменение частоты сердечных сокращений. Этот механизм связан с возникновением сердечного рефлекса с участием предсердных рецепторов. Предсердные рецепторы располагаются в субэндокардиальном слое на уровне соединений верхней и нижней полых вен и правого предсердия, легочных вен и левого предсердия. Они оказываются чувствительны к изменениям размеров и давления в полости предсердий. Афферентным путем рефлекса являются блуждающие нервы, эфферентным – симпатические нервы сердца. Повышенный приток крови повышает давление в предсердиях, что увеличивает импульсацию предсердных рецепторов и заканчивается увеличением частоты сердечных сокращений. Увеличение частоты сердечных сокращений уменьшает время заполнения и поддерживает конечно-диастолический объем на относительно постоянном уровне, несмотря на повышение венозного возврата.
При движении в вертикальном положении начинает работать мышечно-венозная помпа голени. Этот насос работает следующим образом: во время мышечной систолы опорожняются мышечные вены, кровь из синусов выбрасывается в глубокие венозные магистрали, резко повышая в них объемную скорость кровотока. Дистальные клапаны в глубоких и коммуникантных венах вследствие возникающего гидростатического градиента закрываются, препятствуя возникновению ретроградного кровотока. В поверхностных венах происходит кратковременный стаз с повышением давления. Во время расслабления мышц венозная кровь поступает в синусы из мышечных вен, и, через арочные вены, из магистральных вен.
Нормально функционирующая мышечно-венозная помпа способна поддерживать венозный отток от нижних конечностей соответственно артериальному притоку при нагрузке, без дополнительного расширения вен нижних конечностей, довольно значимо снижая венозное давление стопы. Помимо снижения венозного давления важными механизмами работы помпы является снижение капиллярного давления, освобождение объемов крови, дополнительно скопившейся при переходе в вертикальное положение.
В исследованиях Alimi Y.S., Barthelemy P., Juhan C. (1994) представлены данные о нормальных взаимоотношениях давления в трех вместилищах мышечно-венозной помпы (поверхностном и глубоком; задних и переднем большеберцовом) и венозного давления в большой подкожной (БПВ) и подколенной (ПВ) венах в различных положениях тела при работе насоса. В покое в положении сидя и, особенно, стоя происходит повышение венозного давления только в БПВ и ПВ в результате гидростатической силы венозного столба крови без повышения давления в мышечных вместилищах, клапаны которых способны противодействовать этому воздействию. В положении на корточках давление в мышечных вместилищах значительно повышается и вызывает дополнительное повышение венозного давления в ПВ, хотя давление в БПВ незначительно падает. Во время приема Valsalva клапанная протекция мышечных вместилищ оказывается несостоятельной, что приводит к повышению давлений в заднем глубоком и переднем большеберцовом вместилищах. При этом важно отметить, что венозное давление в БПВ и ПВ во время приема Valsalva растет только тогда, когда тело полностью выпрямлено как в положении лежа или стоя. В положении на корточках такого дополнительного повышения за счет приема Valsalva не происходит вследствие, по всей вероятности, компрессии бедренной вены паховой связкой. В течение сгибания стопы действие мышечно-венозной помпы происходит, главным образом, благодаря сокращению переднего большеберцового вместилища, а разгибание – глубокого заднего вместилища. Большого значения действие поверхностного заднего вместилища не имеет. В течение каждого движения значительное повышение давления происходило в одном из вместилищ и вызывало повышение венозных давлений БПВ и ПВ. При этом давление в ПВ изменялось незначительно, демонстрируя хороший венозный отток в случае действия нормально функционирующей мышечно-венозной помпы. Давление в БПВ в течение сгибания стопы повышалось значительнее, чем при разгибании. Поэтому, создается впечатление, что мышечная активность имеет влияния главным образом на вариации давления в поверхностной венозной системе.
Таким образом, можно говорить о центральных и периферических механизмах венозного возврата. К центральным механизмам можно отнести деятельность сердца, легких и диафрагмы, функционирующих в тесном взаимодействии. К периферическим механизмам – реактивность и состояние венозных сосудов, тонус окружающих тканей и деятельность мышечно-венозной помпы.
Что предотвращает обратный ток крови по венам
4. Движение крови по сосудам
Непрерывность движения крови
Сердце сокращается ритмично, поэтому кровь поступает в кровеносные сосуды порциями. Однако по кровеносным сосудам кровь течет непрерывным потоком. Непрерывный ток крови в сосудах объясняется эластичностью стенок артерий и сопротивлением току крови, возникающим в мелких кровеносных сосудах. Благодаря этому сопротивлению кровь задерживается в крупных сосудах и вызывает растяжение их стенок. Растягиваются стенки артерий и при поступлении крови под давлением из сокращающихся желудочков сердца при систоле. Во время диастолы кровь из сердца в артерии не поступает, стенки сосудов, отличающиеся эластичностью, спадаются и продвигают кровь, обеспечивая непрерывное движение ее по кровеносным сосудам.
Причины движения крови по сосудам
Кровь движется по сосудам благодаря сокращениям сердца и разнице давления крови, устанавливающейся в разных частях сосудистой системы. В крупных сосудах сопротивление току крови невелико, с уменьшением диаметра сосудов оно возрастает.
Преодолевая трение, обусловленное вязкостью крови, последняя утрачивает часть энергии, сообщенной ей сокращающимся сердцем. Давление крови постепенно снижается. Разность давления крови в различных участках кровеносной системы служит практически основной причиной движения крови в кровеносной системе. Кровь течет от места, где ее давление выше, туда, где давление крови ниже.
Кровяное давление
Давление, под которым кровь находится в кровеносном сосуде, называют кровяным давлением. Оно определяется работой сердца, количеством крови, поступающим в сосудистую систему, сопротивлением стенок сосудов, вязкостью крови.
Кровяное давление в кровеносной системе меняется. Во время систолы желудочков кровь с силой выбрасывается в аорту, давление крови при этом наибольшее. Это наивысшее давление называют систолическим или максимальным. Оно возникает в связи с тем, что из сердца в крупные сосуды при систоле притекает больше крови, чем ее оттекает на периферию. В фазе диастолы сердца артериальное давление понижается и становится диастолическим, или минимальным.
Измерение кровяного давления у человека производят с помощью сфигмоманометра. Этот прибор состоит из полой резиновой манжеты, соединенной с резиновой грушей и ртутным манометром (рис. 28). Манжету укрепляют на обнаженном плече испытуемого и резиновой грушей нагнетают в нее воздух, для того чтобы сжать манжетой плечевую артерию и остановить в ней ток крови. В локтевом сгибе прикладывают фонендоскоп, чтобы можно было прослушать движение крови в артерии. Пока в манжету не поступил воздух, кровь по артерии течет бесшумно, никаких звуков через фонендоскоп не прослушивается. После того как в манжету накачают воздух и манжета сожмет артерию и остановит ток крови, при помощи специального винта медленно выпускают воздух из манжеты до тех пор, пока через фонендоскоп не прослушается четкий прерывистый звук (туп-туп). При появлении этого звука смотрят на шкалу ртутного манометра, отмечают показание его в миллиметрах ртутного столба и считают это величиной систолического (максимального) давления.
Рис. 28. Измерение кровяного давления у человека
Если продолжать выпускать воздух из манжеты, то вначале звук сменяется шумом, постепенно ослабевающим, и наконец совсем исчезает. В момент исчезновения звука отмечают высоту ртутного столба в манометре, что соответствует диастолическому (минимальному) давлению. Время, в течение которого производится измерение давления, не должно быть более 1 мин, так как в противном случае может быть нарушено кровообращение в руке ниже места наложения манжеты.
Вместо сфигмоманометра для определения величины кровяного давления можно пользоваться тонометром. Принцип действия его такой же, как и сфигмоманометра, только в тонометре манометр пружинный.
Опыт 13
Определите величину кровяного давления у своего товарища в состоянии покоя. Запишите величины максимального и минимального кровяного давления у него. А теперь попросите товарища сделать подряд 30 глубоких приседаний и после этого снова определите величину кровяного давления. Сравните полученные величины кровяного давления после приседаний с величинами давления крови в состоянии покоя.
При нормальном течении жизненных процессов у здорового человека величина кровяного давления поддерживается на постоянном уровне. Кровяное давление, повысившееся при физической нагрузке, нервном напряжении и в других случаях, вскоре возвращается к норме.
В поддержании постоянства кровяного давления важная роль принадлежит нервной системе.
Определение величины кровяного давления имеет диагностическое значение и широко используется в медицинской практике.
Скорость движения крови
Подобно тому как река течет быстрее в своих суженных участках и медленнее там, где она широко разливается, кровь течет быстрее там, где суммарный просвет сосудов самый узкий (в артериях), и медленнее всего там, где суммарный просвет сосудов самый широкий (в капиллярах).
Общий просвет вен уже, чем суммарный просвет капилляров, поэтому скорость движения крови в венах больше, чем в капиллярах, и составляет 200 мм/сек.
Движение крови по венам
Стенки вен, в отличие от артерий, тонкие, мягкие и легко сдавливаются. По венам кровь течет к сердцу. Во многих частях тела в венах есть клапаны в виде кармашков. Открываются клапаны только в сторону сердца и препятствуют обратному току крови (рис. 29). Давление крови в венах невысокое (10-20 мм рт. ст.), и поэтому движение крови по венам происходит в значительной степени за счет давления окружающих органов (мышц, внутренних органов) на податливые стенки.
Каждый знает, что неподвижное состояние тела вызывает потребность «размяться», что связано е застоем крови в венах. Вот почему так полезна утренняя и производственная гимнастика, способствующая улучшению кровообращения и ликвидации застоя крови, который возникает в некоторых частях тела во время сна и продолжительного пребывания в рабочей позе.
Определенная роль в движении крови по венам принадлежит присасывающей силе грудной полости. При вдохе увеличивается объем грудной полости, это приводит к растяжению легких, растягиваются и полые вены, проходящие в грудной полости к сердцу. При растяжении стенок вен их просвет расширяется, давление в них становится ниже атмосферного, отрицательным. В более мелких венах давление остается 10-20 мм рт. ст. Возникает значительная разница давлений в мелких и крупных венах, что способствует продвижению крови в нижней и верхней полых венах к сердцу.
Кровообращение в капиллярах
В капиллярах совершается обмен веществ между кровью и тканевой жидкостью. Густая сеть капилляров пронизывает все органы нашего тела. Стенки капилляров очень тонкие (толщина их 0,005 мм), через них легко проникают различные вещества из крови в тканевую жидкость и из нее в кровь. Кровь по капиллярам течет очень медленно и успевает отдавать тканям кислород и питательные вещества. Поверхность соприкосновения крови со стенками сосудов в капиллярной сети в 170 000 раз больше, чем в артериях. Известно, что длина всех капилляров взрослого человека больше 100 000 км. Просвет капилляров так узок, что через него может проходить только один эритроцит, и то несколько сплющиваясь. Это создает благоприятные условия для отдачи кровью кислорода тканям.
Опыт 14
Пронаблюдайте движение крови в капиллярах плавательной перепонки лягушки. Обездвижьте лягушку, поместив ее в банку с крышкой, куда бросьте ватку, смоченную эфиром. Сразу, как только прекратится двигательная активность лягушки (чтобы не передозировать наркоз), выньте ее из банки и приколите булавками к дощечке спинкой кверху. В дощечке должно быть отверстие, над отверстием осторожно булавками растяните плавательную перепонку задней лапки лягушки (рис. 30). Не рекомендуется сильно растягивать плавательную перепонку: при сильном натяжении могут оказаться сдавленными кровеносные сосуды, что приведет к остановке кровообращения в них. Во время опыта лягушку смачивайте водой.
Рис. 30. Фиксация органов лягушки для наблюдения кровообращения под микроскопом
Можно также обездвижить лягушку, плотно обернув ее мокрым бинтом так, чтобы одна из ее задних конечностей осталась свободной. Чтобы лягушка эту свободную заднюю конечность не сгибала, к ней прикладывают небольшую палочку, которую прибинтовывают к конечности также влажным бинтом. Плавательная перепонка лапки лягушки остается свободной.
Поместите дощечку с растянутой плавательной перепонкой под микроскоп и сначала при малом увеличении найдите сосуд, в котором эритроциты медленно передвигаются «гуськом». Это капилляр. Рассмотрите его под большим увеличением. Обратите внимание, что кровь движется в сосудах непрерывно (рис. 31).