что представляет собой линия пересечения двух поверхностей вращения

Построение линии пересечения поверхностей с примерами

Содержание:

Построение линии пересечения поверхностей:

Предложенные задания охватывают задачи не на все методы построения линий пересечения поверхностей, а только наиболее распространенные. Ниже приведены решения типовых задач, когда применены различные способы в зависимости от формы и расположения пересекающихся поверхностей.

Одна из поверхностей занимает частное (проецирующее) положение

Задание: даны две поверхности: что представляет собой линия пересечения двух поверхностей вращения

Решение: поверхность цилиндра перпендикулярна к что представляет собой линия пересечения двух поверхностей вращения

что представляет собой линия пересечения двух поверхностей вращения

Точки 4 и 9 определяют видимость линии пересечения на горизонтальной проекции, а точки 1 и 2 наиболее удаленные от контура на горизонтальной проекции. Эту задачу можно решать и методом вспомогательных секущих плоскостей, который рассматривается далее.

Метод вспомогательных секущих плоскостей

Этот метод применяется для построения линии пересечения двух поверхностей, когда секущие (параллельные) плоскости при пересечении с данными поверхностями образуют простые для построения линии (прямую или окружность).

Задание: даны поверхности конуса что представляет собой линия пересечения двух поверхностей вращенияи цилиндра Ф (рис. 13.3). Требуется построить линию их пересечения.

Для определения их горизонтальных проекций через ось цилиндра параллельно что представляет собой линия пересечения двух поверхностей вращенияпроводят вспомогательную секущую плоскость Г (ее фронтальный след что представляет собой линия пересечения двух поверхностей вращения).

Эта плоскость рассечет цилиндр по очерковым образующим, а конус по окружности радиуса R, которая на что представляет собой линия пересечения двух поверхностей вращениябудет проецироваться в натуральную величину. Пересечение этой окружности с очерковыми образующими цилиндра есть не что иное, как горизонтальные проекции характерных точек что представляет собой линия пересечения двух поверхностей вращения(рис. 13.3).

Построение промежуточных точек аналогично построению точек 3 и 4, только образующие, по которым вспомогательная плоскость будет рассекать цилиндр, не будут очерковыми (рис. 13.4).

что представляет собой линия пересечения двух поверхностей вращения

Решение: на фронтальной проекции фиксируют точки пересечения заданных поверхностей вращения что представляет собой линия пересечения двух поверхностей вращения— они принадлежат искомой линии пересечения. Горизонтальные проекции этих точек находятся на осевой линии конуса и цилиндра – что представляет собой линия пересечения двух поверхностей вращения.

Горизонтальные проекции этих точек определяются по принадлежности одной из поверхностей. В данном случае удобнее их получать по принадлежности конусу. Например, точки 3 и 4 лежат на той же окружности, по которой вспомогательная сфера пересекает конус. Изменяя радиус вспомогательной секущей сферы, находят ряд точек линии пересечения, соединив которые, получают проекции искомой линии (рис. 13.6). Чтобы определить видимость горизонтальной проекции линии пересечения, на её фронтальной проекции отмечают точки, лежащие на проекции осевой линии цилиндра и принадлежащие линии пересечения.

Затем по линиям проекционной связи переносят их на очерковые образующие горизонтальной проекции цилиндра. Точки, лежащие ниже указанных, будут находиться на невидимой части цилиндра.

Метод эксцентрических сфер

Метод эксцентрических сфер применяется для построения линии пересечении поверхностей вращения, у которых оси расположены в одной плоскости, являющейся плоскостью симметрии. При этом пересекающиеся поверхности должны иметь семейство круговых сечений.

что представляет собой линия пересечения двух поверхностей вращения

Пересечение линии с поверхностью

В общем случае для графического определения положения точек пересечения линии с поверхностью необходимо выполнить ряд геометрических построений в следующей последовательности: заключить линию во вспомогательную поверхность; определить линию пересечения этой поверхности с заданной поверхностью; отметить точки пересечения построенной линии с заданной.

Этот алгоритм является универсальным, пригодным для решения любых задач. Ранее (лекция 4, рис. 4.5 и 4.6) он применялся для построения проекций точки пересечения прямой с плоскостью, где в качестве вспомогательной секущей поверхности использовалась плоскость и строилась прямая линии пересечения ее с заданной плоскостью, а искомая проекция точки пересечения определялась как место пересечения этой линии с заданной прямой.

На рис. 12.1–12.3 проиллюстрирован тот же алгоритм применительно к построению точки пересечения кривой линии k с плоскостью α(∆ABC).

что представляет собой линия пересечения двух поверхностей вращения

что представляет собой линия пересечения двух поверхностей вращения

В качестве секущей поверхности в данном случае следует использовать проецирующую цилиндрическую поверхность, в частности, горизонтально-проецирующую β(βH)что представляет собой линия пересечения двух поверхностей вращенияH, в которую должна быть заключена кривая k(k»,k’). Для этого на чертеже (рис. 12.3) обозначаем горизонтальный след этой поверхности βH. Горизонтальная проекция линии ее пересечения с заданной плоскостью α(∆ABC) совпадает с ним, располагаясь между точками 1′-2′. Для построения ее фронтальной проекции воспользуемся произвольными вспомогательными прямыми линиями, принадлежащими плоскости. Вначале задаем их горизонтальные проекции, например, через вершину C. Затем по точкам их пересечения со стороной AB находим фронтальные проекции вспомогательных прямых и определяем на них фронтальные проекции точек пересечения с ними заданной кривой. Проводим через найденные точки плавную кривую линию, являющуюся, таким образом, фронтальной проекцией линии пересечения, и отмечаем на ней место пересечения с фронтальной проекцией заданной кривой k(k»,k’) – точку O». Это и будет фронтальная проекция искомой точки пересечения заданной кривой k(k»,k’) с плоскостью α(∆ABC). Затем, воспользовавшись линией связи, находим горизонтальную проекцию O’ точки пересечения.

что представляет собой линия пересечения двух поверхностей вращения

Этот алгоритм применен и для построения точек пересечения прямой линии с поверхностями геометрических тел – призмы, пирамиды и самопересекающегося тора (рис. 12.8, а, б, в). Поскольку поверхности этих тел являются замкнутыми, то необходимо найти по две точки пересечения на каждой из них.

При пересечении с призмой (рис. 12.8, а) в качестве секущей плоскости для заключения в нее заданной прямой m(m»,m’) использовалась фронтально-проецирующая плоскость αV. При пересечении с пирамидой (рис. 12.8, б) в качестве секущей плоскости для заключения в нее заданной прямой n(n»,n’) использовалась горизонтально-проецирующая плоскость αH. При пересечении с самопересекающимся тором (рис. 12.8, в) в качестве секущей плоскости для заключения в нее заданной прямой l(l»,l’) использовалась фронтальная плоскость βH. Далее все действия аналогичны рассмотренным. В каждом случае вначале строилась линия пересечения поверхности плоскостью, исходя из ее проецирующего положения, определялись на ней точки пересечения с заданной прямой, а при окончательном оформлении – видимость на чертеже.

В качестве секущей плоскости при определении точек пересечения прямой с поверхностью могут использоваться также плоскости общего положения, пересекающие поверхность вдоль ее образующих (рис. 12.8, г, д). Так, для построения точек пересечения прямой a(a»,a’) общего положения с поверхностью прямого кругового конуса (рис. 12.8, г) показано использование плоскости общего положения α, проходящей через вершину конуса и заданную прямую. Плоскость задана двумя пересекающимися прямыми. Одна из них – это заданная прямая a(a»,a’), вторая – пересекающаяся с ней произвольная прямая b(b»,b’), проходящая через вершину конуса. Для построения проекций образующих, вдоль которых плоскость пересекает поверхность конуса, найден ее горизонтальный след, затем проекции C’ и D’ точек его пересечения с горизонтальным следом основания конуса и фронтальные проекции C» и D» этих точек. Искомые проекции точек M(M»,M’) и N(N»,N’) пересечения заданной прямой общего положения с поверхностью конуса находятся в местах пересечения с ней построенных образующих.

Аналогичные действия выполнены и для построения проекций M»,M’ и N»,N’ точек пересечения прямой общего положения k(k»,k’) с поверхностью наклонного эллиптического цилиндра (рис. 12.8, д). Для этого использовалось задание плоскости общего положения α(k∩l) также двумя пересекающимися прямыми, одна из которых, как и в предыдущем случае, – это заданная прямая k(k»,k’), а пересекающаяся с ней в произвольной точке 1(1″,1′) вторая прямая линия – это прямая l(l»,l’), параллельная образующим цилиндра. Строился горизонтальный след этой плоскости и по точкам пересечения его с горизонтальным следом заданного цилиндра находились образующие, по которым вспомогательная плоскость общего положения α(k∩l) пересекает цилиндр. В местах пересечения с проекциями этих образующих проекций прямой общего положения k(k»,k’) находятся искомые проекции M»,M’ и N»,N’ точек пересечения заданной прямой с поверхностью цилиндра.

Касательные плоскости и нормаль к поверхности

Плоскостью, касательной к поверхности в некоторой ее точке, называют плоскость, в которой можно провести две прямые линии, пересекающиеся в точке касания, касательные к двум пересекающимся в этой же точке линиям, принадлежащим поверхности.

На чертеже касательную плоскость α(α»,α’) однозначно можно задать проекциями двух пересекающихся прямых m(m»,m’) и n(n»,n’). Эти линии строят касательно к проекциям двух пересекающихся в точке касания линий, принадлежащих поверхности. На рис. 12.4 линия m(m»,m’) является касательной к линии окружности l(l»,l’), проходящей через точку касания K(K»,K’) по поверхности цилиндра, а пересекающаяся с ней в этой точке линия n(n»,n’) сливается с линией р(р»,р’) – образующей цилиндра.

что представляет собой линия пересечения двух поверхностей вращения

Аналогичные действия (рис. 12.8, е, ж, з) выполнены и при построении касательных плоскостей к поверхностям прямого кругового конуса, самопересекающегося тора и сферы, касающихся этих поверхностей в некоторой точке A(A»,A’). Пересекающиеся прямые m(m»,m’) и n(n»,n’), задающие касательные плоскости α(α»,α’) к ним, являются касательными к окружностям, построенным на этих поверхностях вращения и пересекающимся в точке касания A(A»,A’). Следует отметить одну особенность при построении прямой n(n»,n’), касательной к линии меридионального сечения поверхности самопересекающегося тора (рис. 12.8, ж). Для упрощения построений вначале строят касательную к этой линии, параллельной фронтальной плоскости проекций, определяют на оси вращения тора точку S, через которую проходят касательные ко всем точкам, расположенным на той же параллели поверхности, что и заданная точка касания A(A»,A’), а затем строят необходимую касательную n(n»,n’).

Эти построения использовались также для определения точки касания K(K»,K’) на поверхности самопересекающегося тора в задаче на рис. 12.5, где необходимо было задать общую касательную плоскость к поверхностям самопересекающегося тора и прямого кругового конуса. Ключом к решению задачи явилось заключение самопересекающегося тора в коническую поверхность с тем же углом наклона образующих, что и у заданного конуса (справа). Общая касательная плоскость задана пересекающимися прямыми, из которых m1(m1«,m1‘), являющаяся горизонтальным следом плоскости, построена, как касательная к следам указанных конических поверхностей, а прямая m2(m2«,m2‘), сливается с одной из образующих заданного конуса. Эта образующая является и геометрическим элементом касания построенной плоскости α(m1∩m2) с поверхностью заданного конуса. Поверхности самопересекающегося тора эта плоскость касается в точке K(K»,K’), которая найдена благодаря вышерассмотренным построениям и образующей второго конуса, охватывающего тор.

что представляет собой линия пересечения двух поверхностей вращения

На рассматриваемом чертеже показано также построение нормали n(n»,n’), к поверхности самопересекающегося тора в точке K(K»,K’). Условием для построения нормали является ее перпендикулярность к плоскости, касательной к поверхности в той же точке. Вначале нормаль построена к очерковой образующей тора, затем на ней взята произвольная точка и выполнен ее поворот вокруг оси тора в положение, в котором она окажется расположенной в плоскости, перпендикулярной построенной касательной плоскости (направления указанных перемещений показаны стрелками).

На рис. 12.6 показано построение точек пересечения P(P»,P’) и T(T»,T’) фронтальной прямой MN(M»N»,M’N’) с поверхностью ¼ кольцевого тора и построение касательной плоскости к этой поверхности в одной из построенных точек, например, T(T»,T’).

что представляет собой линия пересечения двух поверхностей вращения

Для задания касательной плоскости β(m∩n) одна из задающих ее пересекающихся прямых m(m»,m’) построена как касательная к линии кольцевого сечения поверхности тора в точке T(T»,T’), а вторая – как касательная прямая n(n»,n’) к линии окружности осевого сечения поверхности тора. Для более точного построения второй прямой была найдена проекция SK» точки на оси вращения тора, в которой сходятся все касательные прямые к поверхности тора во всех точках, находящихся на той же параллели, что и точка T(T»,T’).

Структуризация материала двенадцатой лекции в рассмотренном объеме схематически представлена на рис. 12.7 (лист 1). На последующем листе 2 компактно приведены иллюстрации к этой схеме для визуального закрепления изученного материала при повторении (рис. 12.8).

Пересечение линии с поверхностью:

Касательные плоскости и нормаль к поверхности

что представляет собой линия пересечения двух поверхностей вращения

Касательная плоскость к кривой поверхности в некоторой точке – это плоскость, в которой лежат все касательные прямые ко всем кривым, которые можно провести на поверхности через ту же точку.

Нормалью к поверхности в данной точке называется прямая, перпендикулярная к касательной плоскости и проходящая через точку касания.

12.1. Пересечение прямой с поверхностью

что представляет собой линия пересечения двух поверхностей вращения

что представляет собой линия пересечения двух поверхностей вращения

что представляет собой линия пересечения двух поверхностей вращения

что представляет собой линия пересечения двух поверхностей вращения

что представляет собой линия пересечения двух поверхностей вращения

12.2. Касательные плоскости

что представляет собой линия пересечения двух поверхностей вращения

что представляет собой линия пересечения двух поверхностей вращения

что представляет собой линия пересечения двух поверхностей вращения

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Содержание:

Взаимное пересечение поверхностей:

что представляет собой линия пересечения двух поверхностей вращения

При пересечении поверхностей образуется линия, которую принято называть линией взаимного пересечения поверхностей. Эта линия пересечения принадлежит одновременно двум поверхностям. Поэтому построение линии пересечения сводится к определению точек одновременно принадлежащих обеим поверхностям. Для нахождения таких точек используется в общем случае метод вспомогательных секущих поверхностей. Сущность способа заключается в следующем: Пусть задано две поверхности что представляет собой линия пересечения двух поверхностей вращения

Общий алгоритм построения линии пересечения поверхностей:

В качестве посредников могут быть приняты как поверхности, так и плоскости, но целесообразно выбирать такие, которые дают наиболее простые линии пересечения с заданными поверхностями.

Взаимное пересечение поверхностей

Чтобы определить проекцию линии пересечения, необходимо найти проекции точек, общих для этих поверхностей. Их находят способом вспомогательных секущих плоскостей или вспомогательных сфер.

Если рёбра призмы или ось вращения цилиндра перпендикулярны какой-либо из плоскостей проекций, то на этой плоскости проекций линия пересечения совпадает с контуром основания призмы или цилиндра.

Пересечение двух многогранников

что представляет собой линия пересечения двух поверхностей вращения

По чертежу видим, что только ребро DD’ пресекает поверхность пирамиды. Для определения точек пересечения 5 и б через ребро DD’ проводим горизонтальную плоскость, которая пересекает пирамиду по треугольнику. Точки 5 и 6 получаем, как пересечение DD’ с построенным треугольником.

Полученные точки соединяем с учетом видимости. Видимой считается тот отрезок прямой, который принадлежит двум видимым граням поверхностей.

Как видим, линия пересечения двух многогранников представляет собой пространственную ломаную линию.

Пересечение гранной и кривой поверхности

Линия пересечения гранной и кривой поверхности, представляет собой пространственную кривую линию, с точками излома на ребрах многогранника.

Поэтому сначала определяем точки пересечения ребер многогранника с кривой поверхностью, а затем промежуточные точки и соединяем их с учетом видимости. На рисунке 9.3 заданы поверхности трехгранной призмы и кругового конуса.

что представляет собой линия пересечения двух поверхностей вращения

Так как призма фронтально-проецирующая, фронтальная проекция линии пересечения совпадает с проекцией боковых граней призмы, поэтому необходимо построить только горизонтальную проекцию линии пересечения.

Сначала определяем точки пересечения ребер призмы что представляет собой линия пересечения двух поверхностей вращенияс поверхностью конуса, а затем находим промежуточные точки, принадлежащие линиям пересечения. Для нахождения точек пересечения, используем горизонтальные плоскости посредники, так как они пересекают конус по окружностям, а призму но прямым линиям. Как видим, в данном случае линия пересечения распадается на две отдельные части.

Пересечение двух кривых поверхностей. Метод вспомогательных секущих плоскостей

Линия пересечения двух кривых поверхностей, представляет пространственную кривую линию. Поэтому для ее построения необходимо определить ряд точек принадлежащих этой лини.

На рисунке 9.4 заданы поверхности конуса и сферы. Точки строятся при помощи горизонтальных плоскостей посредников, которые рассекают обе поверхности но окружностям.

Обязательно находим опорные точки, к которым относятся высшая и низшая точки линии пересечения и точки границы видимости. Так как оси поверхностей лежат в одной фронтальной плоскости, контурные образующие поверхностей пересекаются в точках 1 и 2 — это и будет высшая и низшая точки. Точки границы видимости лежат на экваторе сферы, поэтому точки 3 и 3′ находим с помощью вспомогательной горизонтальной плоскости, проходящей через центр сферы. Она рассекает сферу по экватору, а конус но параллели радиуса R.

что представляет собой линия пересечения двух поверхностей вращения

Взаимно пересекаясь, они и дают точки 3 и 3′ фронтальную проекцию определяем по вертикальной линии связи на плоскости что представляет собой линия пересечения двух поверхностей вращенияЗатем берем еще две вспомогательные плоскости расположенные выше и ниже плоскости что представляет собой линия пересечения двух поверхностей вращенияи выполняя, аналогичные построения определяем точки 4 и что представляет собой линия пересечения двух поверхностей вращения5 и 5′. Полученные точки соединяем с учетом видимости.

Пересечение поверхностей вращении. Метод вспомогательных секущих сфер

Способ вспомогательных секущих сфер применяется при следующих условиях:

Перед рассмотрением этого способа разберем понятие соосных поверхностей. Соосными называются поверхности вращения, имеющие общую ось. Соосные поверхности пересекаются по окружностям перпендикулярным оси вращения.

На рисунке 9.5 приведены некоторые из них.

Именно то, что поверхности пересекаются по окружностям, которые проецируются в линии и используется в методе сфер. что представляет собой линия пересечения двух поверхностей вращения

что представляет собой линия пересечения двух поверхностей вращения

В данном случае минимальная сфера вписана в конус. Минимальная сфера касается поверхности конуса по окружности, а цилиндр пересекает по окружности. Нужно, иметь ввиду, что проекции окружностей пересечения перпендикулярны осям вращения. Эти две окружности пересекаются в точке что представляет собой линия пересечения двух поверхностей вращения. Фактически таких точек две, они совпадают на фронтальной проекции. Для построения промежуточных точек берем вспомогательные сферы радиусов в пределах от что представляет собой линия пересечения двух поверхностей вращения

Они пересекают и поверхность цилиндра, и поверхность конуса по окружностям, которые пересекаясь даюг промежуточные точки. Полученные точки соединяются плавной линией.

Здесь построена только фронтальная проекция. Для построения горизонтальной проекции, если это необходимо, точки строят как лежащие на окружностях полученных радиусов.

Теорема Монжа

Рассмотрим вариант, когда минимальная сфера касается двух поверхностей вращения. В этом случае для построения линии пересечения поверхностей используется теорема Г. Монжа, которая формулируется так:

Если две поверхности вращении второго порядка описаны около третьей или вписаны в нее, то линии их пересечении распадается на две плоские кривые второго порядка. Плоскости этих кривых проходит через прямую, соединяющую точки пересечении линий касании.

что представляет собой линия пересечения двух поверхностей вращения

Пересечение поверхностей вращения с многогранниками

Внешние и внутренние формы большинства предметов образуются сочетанием нескольких поверхностей. Пересекаясь между собой, они образуют линии, которые принято называть линиями перехода.

что представляет собой линия пересечения двух поверхностей вращенияРисунок 9.1 – Корпус с линиями перехода

Линия пересечения многогранника с телом вращения в общем случае состоит из отдельных участков кривых линий, получающихся при пересечении граней многогранника с поверхностью вращения. Точки перехода от одного участка к другому находятся в пересечении ребер многогранника с телом вращения и называются точками излома. Участок линии пересечения может быть и прямой линией в случае пересечения линейчатой поверхности вращения гранью многогранника по образующей.

При проницании (полном пересечении) получаются две замкнутые линии пересечения. Они могут быть плоскими (поверхность вращения проницает одну грань) или пространственными, состоящими из нескольких плоских кривых с точками излома в местах пересечения поверхности вращения ребрами многогранника.

При врезании (неполном пересечении) получается одна замкнутая пространственная линия.

Таким образом, в соответствии с указанным выше, задачи данной темы решаются по следующему плану:

При построении точек линии пересечения многогранников с телами вращения используют вспомогательные секущие плоскости. Их располагают так, чтобы они пересекали данные поверхности по простым для построения линиям (прямым или окружностям).

Рассмотрим линии пересечения поверхности прямой трехгранной призмы с поверхностью конуса вращения. Боковые грани призмы являются фронтально-проецирующими плоскостями, а ось конуса перпендикулярна горизонтальной плоскости проекций.

Призму можно рассматривать, как три плоскости, проходящие через ее грани, а задача сводится к нахождению линий пересечения этих плоскостей с конусом.

что представляет собой линия пересечения двух поверхностей вращения

Пример. Построить линию пересечения поверхности тора с поверх-ностью трехгранной призмы (рис. 9.3).

Решение. Боковые грани призмы являются фронтально-проецирующими плоскостями и фронтальная проекция линии пересечения совпадают с проекцией боковой поверхности призмы. Из фронтальной проекции видно, что в данном случае имеет место проницание тора призмой (две замкнутые линии пересечения).

На рис. 9.3 рассмотрен пример пересечения поверхностей тора и треугольной призмы [2].

По двум заданным проекциям строим третью – профильную.

что представляет собой линия пересечения двух поверхностей вращения

Рисунок 9.3 – Построение линии пересечения трехгранной призмы с тором

Заданная призма – горизонтально-проецирующая. Так как грани призматического отверстия перпендикулярны горизонтальной плоскости проекций, то на чертеже известна горизонтальная проекция линии пересечения, она совпадает с вырожденной проекцией поверхности призмы.

Следовательно, линия пересечения совпадает с горизонтальной проекцией основания призмы.

Определяем характерные точки: самую близкую точку 1 фронтальной плоскостью что представляет собой линия пересечения двух поверхностей вращенияи самые далекие – что представляет собой линия пересечения двух поверхностей вращенияи 3 фронтальной плоскостью S (что представляет собой линия пересечения двух поверхностей вращения).

Определяем промежуточные точки 4 и 5 при помощи вспомогательных фронтальных плоскостей что представляет собой линия пересечения двух поверхностей вращения.

Соединяем полученные точки плавной кривой линией с учетом видимости.

Пересечение поверхностей вращения

Линия пересечения двух поверхностей вращения в общем случае представляет пространственную кривую, которая может распадаться на две и более части. Эти части могут быть, в частности, и плоскими кривыми и даже прямыми линиями.

Линию пересечения поверхностей обычно строят по ее отдельным точкам. Точки подразделяются на характерные (опорные) и промежуточные (случайные).

Общим способом построения этих точек является способ вспомогательных секущих поверхностей – посредников. При пересечении данных поверхностей вспомогательной поверхностью определяются линии пересечения ее с данными поверхностями, в пересечении этих линий получаются точки, принадлежащие искомой линии пересечения.

Наиболее часто в качестве поверхностей-посредников применяются плоскости или сферы.

Для определения линии пересечения часто пользуются вспомогательными секущими поверхностями. Поверхности-посредники пересекают данные поверхности по линиям, которые, в свою очередь, пересекаются в точках линии пересечения данных поверхностей.

Секущие поверхности-посредники выбираются так, чтобы они, пересекаясь с данными поверхностями, давали простые для построения линии, например прямые и окружности.

Способ вспомогательных секущих плоскостей

В качестве вспомогательных секущих плоскостей чаще всего используют плоскости, параллельные одной из плоскостей проекций.

Положение их выбирают таким, чтобы они пересекали заданные поверхности по простейшим линиям – прямым или окружностям.

Этот способ рекомендуется применять, если сечениями заданных поверхностей одной и той же плоскостью являются прямыми линиями или окружностями. Такая возможность существует в трех случаях:

Пересечение цилиндрической и торовой поверхности

Если одна из поверхностей является цилиндрической проецирующей поверхностью, то построение линии пересечения упрощается, так как в этом случае одна проекция линии пересечения совпадает с окружностью – проекцией цилиндра на перпендикулярную плоскость проекций.

На рис. 9.4 построена линия перехода между цилиндром и тором. Так как поверхность цилиндра перпендикулярна плоскости Н, то горизонтальная проекция линии перехода известна. Она совпадает с горизонтальной проекцией цилиндра. Фронтальную и профильную проекции строим по принадлежности точек линии перехода не проецирующей поверхности тора.

что представляет собой линия пересечения двух поверхностей вращения

Линия пересечения заданных поверхностей представляет собой пространственную кривую линию, имеющую фронтальную плоскость симметрии, образованную пересекающимися поверхностями цилиндра и тора.

Рассмотрим линию пересечения поверхности сферы с поверхностью конуса вращения (Рисунок 9.5).

Точки 1 и 7, расположенные на очерках фронтальных проекций конуса и сферы, очевидны и определяются без дополнительных построений.

Точка 4 на экваторе сферы построена с помощью горизонтальной плоскости, пересекающей конус по окружности. В пересечении горизонтальных проекций этой окружности и экватора находится горизонтальная проекция 4′ точки 4 и фронтальная 4» проекции точки 4 определим с помощью линии связи. Точка 4 на горизонтальной проекции разделяет кривую на видимую и невидимую части.

Точки 2, 3, 5 и 6, расположенные в промежутке между характерными точками 1,4 и 7 строим аналогично. С помощью линий связи определим фронтальные и горизонтальные проекции этих точек.

что представляет собой линия пересечения двух поверхностей вращения

Особые случаи пересечения

Пересечение соосных поверхностей вращения

Соосными называют поверхности вращения, оси которых совпадают. Линия пересечения таких поверхностей строится на основании теоремы о пересечении соосных поверхностей вращения: соосные поверхности вращения пересекаются между собой по окружностям.

Если ось вращения соосных поверхностей перпендикулярна к какой либо плоскости проекций, то линия их пересечения проецируется на эту плоскость в виде окружности, а на другую плоскость проекций – в прямую линию.

На рис. 9.6 даны примеры пересечения соосных поверхностей вращения (ось вращения параллельна горизонтальной плоскости). На рис. 9.6, а приведены сфера и конус, б – сфера и цилиндр, в – сфера и тор.

что представляет собой линия пересечения двух поверхностей вращения

Теорема Монжа для пересекающихся поверхностей вращения

Если две поверхности второго порядка описаны около третьей или вписаны в нее, то линия их пересечения распадается на две плоские кривые второго порядка. Плоскости этих кривых проходят через прямую, соединяющую точки пересечения линий касания.

Для этого случая пересечения поверхностей вращения необходимо выполнение трех условий:

что представляет собой линия пересечения двух поверхностей вращения

Это положение подтверждается теоремой Монжа: Если две поверхности второго порядка могут быть вписаны или описаны около третьей поверхности второго порядка, то пространственная кривая их пересечения четвертого порядка распадается на две плоские кривые второго порядка.

Способ вспомогательных секущих сфер

При построении линии пересечения поверхностей вращения не всегда удается подобрать секущие плоскости так, чтобы они пересекали поверхности по линиям, проекции которых были бы прямыми или окружностями. В некоторых таких случаях в качестве секущих поверхностей (посредников) целесообразно применять сферы. Этот способ основан на свойстве сферы пересекаться с любой поверхностью вращения, ось которой проходит через центр сферы по окружности.

Чтобы сфера одновременно пересекала две поверхности по окружностям, проецирующимся в прямые линии, необходимо выполнить условия:

Пример. Построить проекции линии пересечения поверхностей конуса и цилиндра (рис. 9.8) [1].

Заданы прямой усеченный конус и наклонный цилиндр – тела вращения. Их оси параллельны фронтальной плоскости проекций и пересекаются в точке О(о′,о), т.е. соблюдены условия метода сфер.

Как и в предыдущих задачах, найдем проекции характерных точек. Точка 1 – самая высокая, точка 2 – самая низкая. Чтобы убедится в этом проведем через оси тел вспомогательную фронтальную плоскость что представляет собой линия пересечения двух поверхностей вращения. Эта плоскость рассекает рассматриваемые тела по крайним очерковым образующим, которые на фронтальную плоскость проекции проецируются без искажения и, пересекаясь между собой, образуют искомые точки 1′, 2′. С помощью вспомогательных сфер найдем другие точки линии пересечения заданных поверхностей. Для определения радиуса наименьшей сферы из центра О(о′) проведем две нормали, перпендикулярные очерковым образующим этих тел и большей нормалью выполним эту сферу. Эта сфера будет наименьшей что представляет собой линия пересечения двух поверхностей вращения, проведенной в большем теле, поэтому поверхности конуса она касается по окружности, которая проецируется на фронтальную плоскость проекций в виде отрезка m′′n′′, а поверхность наклонного цилиндра пересекает по окружности, фронтальная проекция которой также проецируется в прямую линию k′′l′′. В пересечении k′′l′′ и m′′n′′ получим точку 3′′ – самую глубокую точку пересечения. Для нахождения промежуточных точек проведем ряд концентрических сфер, радиусы которых должны находится в пределе что представляет собой линия пересечения двух поверхностей вращения, и аналогично точке 3′′ находим необходимые промежуточные точки.

что представляет собой линия пересечения двух поверхностей вращения

Учитывая, что сфера минимального радиуса всегда касается той поверхности, которая пронизывается другой, соединим найденные фронтальные проекции плавной кривой. Получим фронтальную проекцию линии пересечения. В нашем случае сфера радиусом что представляет собой линия пересечения двух поверхностей вращениякасается поверхности конуса, значит, поверхность цилиндра пронизывает поверхность конуса.

Построим горизонтальную проекцию линии пересечения. Т.к. точки 1′′, 2′′ лежат на очерковой образующей конуса, то горизонтальные проекции этих точек находятся на оси конуса, т.е. на горизонтальной проекции этой образующей. Для нахождения горизонтальных проекций точек 3′, 4′, 5′ воспользуемся горизонтальными плоскостями что представляет собой линия пересечения двух поверхностей вращения, проведенными через эти точки соответственно. Каждая плоскость рассекает поверхность конуса по окружности, которая на горизонтальной плоскости проекций не искажается. По линиям связи найдем горизонтальные проекции точек 3′, 4′, 5′.

Для правильного соединения точек определим их видимость. Границей видимости на плоскости Н является точка 4′′, лежащая на осевой фронтальной проекции цилиндра. Горизонтальные проекции ее что представляет собой линия пересечения двух поверхностей вращениянаходятся на очерковых образующих цилиндра. Соединив плавной кривой найденные точки, получим горизонтальную проекцию линии пересечения рассматриваемых тел.

Способ вспомогательных секущих плоскостей

Этот способ применим тогда, когда контуры отдельных сечений представляют прямые линии или окружности.

что представляет собой линия пересечения двух поверхностей вращения

Проведём еще ряд горизонтальных секущих плоскостей и определим проекции других промежуточных точек линии пересечения, которые соединим лекальной кривой с учётом видимости.

что представляет собой линия пересечения двух поверхностей вращения

При взаимном пересечении конуса и цилиндра (рисунок 1) ось вращения цилиндра перпендикулярна что представляет собой линия пересечения двух поверхностей вращения. Значит, на что представляет собой линия пересечения двух поверхностей вращениялиния пересечения совпадет с контуром основания цилиндра, т.е. фронтальной проекцией линии пересечения будет являться фронтальная проекция цилиндра.

Построив горизонтальную проекцию линии пересечения, на что представляет собой линия пересечения двух поверхностей вращенияна пересечении горизонтальной оси симметрии цилиндра с проекцией цилиндра наметим точки что представляет собой линия пересечения двух поверхностей вращениячто представляет собой линия пересечения двух поверхностей вращения— точки границы видимости линии пересечения, лежащие на экваторе цилиндра.

Способ вспомогательных сфер

Этот метод можно применять при соблюдении следующих условий :

Сфера что представляет собой линия пересечения двух поверхностей вращенияпроходит через самую дальнюю очевидную точку.

Сфера пересекает тела по окружностям, проецирующимся на одну из плоскостей проекций отрезком.

1. Определяем очевидные точки что представляет собой линия пересечения двух поверхностей вращения

что представляет собой линия пересечения двух поверхностей вращения

1. Проводим ещё ряд секущих сфер радиусом больше минимальной и меньше максимальной и определяем другие промежуточные точки линии пересечения, которые соединяем лекальной кривой с учётом видимости.

Большее тело поглощает меньшее.

2. Видимость линии пересечения определяем следующим образом:

Элементы технического рисования

Обычно технический рисунок выполняется в изометрии.

что представляет собой линия пересечения двух поверхностей вращения
Технические рисунки получаются более наглядными, если их покрыть штрихами. При нанесении штрихов считают, что лучи света падают на предмет справа и сверху или слева и сверху.

что представляет собой линия пересечения двух поверхностей вращения

Взаимное пересечение поверхностей с примерами

Алгоритм решения задач по определению линии пересечения поверхностей Ф’ и Ф» (рис. 9.1) в целом аналогичен решению второй позиционной задачи и состоит в следующем:

что представляет собой линия пересечения двух поверхностей вращения

Рис. 9.1. Пересечение поверхностей

Определение точек линии пересечения поверхностей начинают с построения так называемых опорных точек. К ним относятся:

Способ вспомогательных параллельных плоскостей

Рассмотрим построение линии пересечения прямого кругового конуса и сферы (рис. 9.2).
что представляет собой линия пересечения двух поверхностей вращения

Рис. 9.2. Линия пересечения поверхностей прямого кругового конуса и сферы

Фронтальные плоскости уровня пересекают поверхность конуса по гиперболам, следовательно, для решения данной задачи нужно применить горизонтальные плоскости уровня, которые рассекают обе данные поверхности по окружностям.

Решение задачи начинают с построения опорных точек. Конус и сфера имеют общую плоскость симметрии γ(γ1), параллельную плоскости П2. Поэтому высшая точка A и низшая точка F линии пересечения получаются как результат пересечения очерковых образующих конуса и сферы (рис. 9.3).

Остальные точки определяются с помощью горизонтальных плоскостей уровня. Более подробно разберем построение точек E и E'(рис. 9.4).

2. Построив горизонтальные проекции окружностей m и q, определить точки их пересечения E и E’:
E1= m1 × q1; E2=E1E2что представляет собой линия пересечения двух поверхностей вращенияα2.
E’1=m1 × q1; E’2=ElE2что представляет собой линия пересечения двух поверхностей вращенияα2.

что представляет собой линия пересечения двух поверхностей вращения

Рис. 9.3. Определение опорных точек линии пересечения поверхностей

3. Аналогичным образом определяются остальные точки, формирующие линию пересечения (рис. 9.5,а). Они получены с помощью горизонтальных плоскостей уровня β(β2), δ(δ2) и μ(μ2). Пределы этих плоскостей по высоте определяют высшая и низшая опорные точки линии пересечения поверхностей. Плоскость μ(μ2)рассекает поверхность сферы по очерковой образующей b (b2, b2),поэтому полученные точки В и В’ являются опорными, ограничивающими линию пересечения поверхностей по ширине.

4. Последовательно соединить одноименные проекции полученных точек плавной лекальной кривой. Полученная линия не должна выходить за пределы области перекрытия проекций данных поверхностей.

5. Определить видимость линии пересечения поверхностей и их очерковых образующих.

Поверхность конуса на горизонтальной плоскости проекций полностью видима, следовательно, видимость линии пересечения определяется по поверхности сферы. Видима будет та часть сферы, которая на П2 лежит выше очерковой образующей b2.Точки В и В’ на очерковой образующей сферы являются точками смены видимости линии пересечения на плоскости проекций П1.
Искомая линия пересечения поверхностей конуса и сферы d(d1,d2) (кривая второго порядка), полученная способом вспомогательных секущих плоскостей, приведена на рис 9.5,б.

что представляет собой линия пересечения двух поверхностей вращения

Способ вспомогательных сфер

Способ концентрических сфер

Этот способ применяется для построения линии пересечения поверхностей вращения произвольного вида, при условии, что оси этих поверхностей пересекаются.

В основу способа концентрических сфер положено свойство сферы с центром на оси какой-либо поверхности.

Если центр сферы находится на оси любой поверхности вращения, то сфера соосна с поверхностью вращения и в их пересечении получатся окружности (рис. 9.6).

что представляет собой линия пересечения двух поверхностей вращения

что представляет собой линия пересечения двух поверхностей вращения

Рис. 9.7. Линия пересечения поверхностей цилиндра и прямого кругового конуса

Точка пересечения осей поверхностей принимается за центр вспомогательных концентрических сфер.

Алгоритм решения задачи об определении линии пересечения поверхностей состоит в следующем:

1. Определить опорные точки (рис. 9.8). Так как обе данные поверхности имеют общую плоскость симметрии δ(δ1), параллельную плоскости проекций П2, то их очерковые образующие, по отношению к плоскости П2,пересекаются. Точки A(A1,A2), B(B1,B2), C(C1,C2) и D(D1,D2) пересечения этих образующих являются точками видимости линии пересечения поверхностей.

2. Определить радиусы максимальной и минимальной сфер, необходимых для определения точек линии пересечения.

Радиус максимальной сферы Rmax равен расстоянию от центра вспомогательных сфер до наиболее удаленной точки пересечения очерковых образующих, в данном случае Rmax=O2A2 (рис. 9.9).

В данном случае сферой минимального радиуса является сфера, касающаяся цилиндрической поверхности (см. рис. 9.9).

Сфера радиусом Rmin касается цилиндрической поверхности по окружности m, которая на фронтальной проекции изображается в виде прямой m2, перпендикулярной q2(m2что представляет собой линия пересечения двух поверхностей вращенияq2). Эта же сфера пересекает коническую поверхность по двум окружностям. Но, в данном случае, нам интересна только окружность n, так как только она дает решение. Эта окружность n изображается на фронтальной проекции в виде прямой n2, перпендикулярной i2(n2что представляет собой линия пересечения двух поверхностей вращенияi2). Точки E и Fпересечения этих окружностей будут принадлежать обеим поверхностям:

Чтобы построить горизонтальные проекции точек Е и F следует воспользоваться окружностью n, содержащей данные точки, так как она не искажается на плоскости проекций П1:

что представляет собой линия пересечения двух поверхностей вращения

Рис. 108. Определение опорных точек линии пересечения поверхностей

что представляет собой линия пересечения двух поверхностей вращения

Рис. 9.9. Определение радиусов максимальной и минимальной сфер.

Для построения промежуточных точек линии пересечения проводят несколько концентрических сфер с центром в точке O, причем радиус R этих сфер должен изменяться в пределах Rmin

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *