третичные зоны коры головного мозга
Третичные зоны коры головного мозга
Ожидайте
Перезвоните мне
Ваш персональный менеджер: Екатерина
Ответственная и отзывчивая! 😊
Аннотация: 3 блока мозга как структурно-функциональная модель.
Статья:
3 блока мозга как структурно-функциональная модель. Признаки нарушения в развитии блоков мозга
В начале 20 века А.Р. Лурия разделил (условно) мозг человека на 3 функциональных блока, взаимодействие которых необходимо для любой психической деятельности.
1-й блок мозга преимущественно ответствен и за эмоциональное «подкрепление» психической деятельности (переживание успеха – неуспеха).
Этот блок мозга участвует в организации внимания, памяти, эмоционального состояния (особенно страх, боль, удовольствие, гнев), перерабатывает разнообразную информацию о состоянии внутренних органов и регулирует эти состояния, а так же поддерживает общий тонус ЦНС.
Все, что происходит с мамой во время беременности (болезни, психотравмы, прием лекарств и т.д.) откладывает свой отпечаток на формирование 1 блока мозга.
2 блок – приема, переработки и хранения информации – формируется от 3х до 7 лет и включает в себя основные анализаторные системы: зрительную, слуховую и кожно-кинестетическую, корковые зоны которые расположены в задних отделах больших полушарий головного мозга.
Поражение третичных зон приводит к нарушению комплексного синтеза раздражений, поступающих от разных анализаторов, что проявляется в нарушении ориентировки в пространстве.
Третичные зоны коры головного мозга
В структурно-функциональном отношении кора большого мозга может быть разделена на передний (лобная доля) и задний (затылочная, теменная и височная доли) отделы. Граница между ними проходит по центральной борозде. Задний отдел осуществляет восприятие афферентных сигналов. Расположенные здесь корковые поля неравноценны в функциональном отношении, и их можно разделить на первичные, вторичные и третичные.
Первичные поля коры представляют собой четко отграниченные участки, которые соответствуют центральным частям анализаторов. В эти поля проходит по специфическим проекционным афферентным путям основная масса сигналов от органов чувств. Первичные поля характеризуются сильным развитием внутренней зернистой пластинки. Первичные поля связаны с реле-ядрами таламуса и ядрами коленчатых тел. Они имеют экранную структуру и, как правило, жесткую соматотопическую проекцию, при которой отдельные участки периферии проецируются в соответствующие им участки коры. Повреждение первичных полей коры сопровождается нарушением непосредственного восприятия и тонкой дифференцировки раздражений.
Первичное зрительно поле (17) расположено на медиальной поверхности полушария вдоль шпорной борозды. Здесь хорошо развита внутренняя зернистая пластинка, которая подразделяется посредством белых полосок на 3 части. Корковые колонки образуют чередующиеся вертикальные пластинки для правого и левого глаза. Полагают, что нейрон ы глубоких слоев коры обладают свойствами «анализатора движения», а нейрон ы поверхностных слоев действуют как « анализатор формы».
Первичные слуховые поля (41, 42) локализуются в поперечных височных извилинах (Гешля) и заходят в верхнюю височную извилину. В этих полях представлены по порядку участки улитки, воспринимающие различные звуковые частоты. Деление на колонки выражено в слуховой коре наиболее отчетливо.
Первичные обонятельные поля находятся в археокортексе, покрывающем обонятельный треугольник, переднее продырявленное вещество, прозрачную перегородку и подмозолистое поле.
Первичное вкусовое поле располагается, по мнению большинства исследователей, в нижнем участке постцентральной извилины, в глубине латерал ьной борозды, и соответствует проекции языка.
Корковый конец вестибулярного анализатора, по данным различных авторов, имеет представительство в средней височной извилине (поле 21), верхней теменной дольке, верхней височной извилине.
Представительство в коре внутренних органов изучено недостаточно, по-видимому, оно имеет более диффузный характер. Важная роль в регуляции функций внутренностей отводится лимбической области коры, в которую входит поясная и парагиппокампальная извилины, гиппокамп, прозрачная перегородка и подмозолистое поле. Лимбическая кора вместе с подкорковыми образованиями (миндалевидное тело, ядро поводков, ядра сосцевидных тел) составляет лимбическую систему, которая представляет субстрат эмоций и реакций, связанных с основными биологическими влечениями (голод, жажда, страх и т.д.).
Вторичные поля коры примыкают к первичным полям. Их можно рассматривать как периферические части корковых анализаторов. Эти поля связаны с ассоциативными ядрами таламуса. При поражении вторичных полей сохраняются элементарные ощущения, но нарушается способность к более сложным восприятиям. Вторичные поля не имеют четких границ, в них не выражена соматотопическая проекция.
Вторичное поле общей чувствительности локализуется в верхней теменной дольке (поля 5, 7). Вторичные зрительные поля (18, 19) занимают медиальную поверхность затылочной доли и большую часть латерал ьной поверхности. Вторичное слуховое поле (22) находится в верхней и средней височных извилинах. Вторичные обонятельные и вкусовые поля локализуются в парагиппокампальной извилине и крючке (поля 28, 34).
Третичные поля коры отличаются наиболее тонкой нейрон ной структурой и преобладанием ассоциативных элементов. Они занимают всю нижнюю теменную дольку и часть верхней теменной дольки, а также затылочно-височно-теменную область. Эти поля связаны с задними ядрами таламуса. В третичных полях осуществляются наиболее сложные взаимодействия анализаторов, лежащие в основе познавательного процесса (гнозия), формируются программы целенаправленных действий (праксия).
Кора височной доли имеет отношение к хранению и воспроизведению впечатлений. При электрическом раздражении некоторых точек височной коры наблюдаются своеобразные реакции в форме «вспышек пережитого» или ощущения «уже виденного». Полагают, что в коре височных долей создается нейрон ная запись потока сознания, она хранится неопределенно долгое время, но не может произвольно воспроизводиться, а «оживает» лишь при искусственной стимуляции и некоторых болезненных состояниях.
Передний отдел полушария имеет отношение к организации действий и также подразделяется на первичные, вторичные и третичные корковые поля. Первичное двигательной поле (4) располагается в предцентральной извилине. Здесь отсутствует внутренняя зернистая пластинка (агранулярная кора) и особенно сильно развита внутренняя пирамидная пластинка с гигантскими пирамидными нейрон ами Беца. Аксоны этих нейрон ов образуют пирамидный путь. На клетки Беца непосредственно переключаются импульсы, поступающие из мозжечка через центральное медиальное ядро таламуса. В первичном двигательном поле вся мускулатура тела представлена в обратной проекции, как и кожный покров в постцентральной извилине. Кора здесь разделена на колонки, которые связаны с определенными группами двигательных нейрон ов спинного мозга и управляют движением отдельных мышц или мышечных групп.
Вторичные двигательные поля (6, 8) находятся кпереди от предцентральной извилины. Они характеризуются сильным развитием наружной и внутренней пирамидных пластинок, в которых преобладают большие пирамидные нейрон ы. Во вторичные поля передаются сигналы из мозжечка. Эфферентные волокна идут отсюда к ядрам полосатого тела. Таким образом, вторичные двигательные поля имеют отношение к экстрапирамидной системе, их функция необходима для выполнения сложных стереотипных двигательных актов. Первичные и вторичные двигательные поля имеют богатые связи с задним отделом полушария. Обратная связь между аппаратом движения и корой осуществляется через мозжечок, который воспринимает проприоцептивные раздражения и после соответствующей переработки передает их в кору большого мозга.
Третичные поля занимают большую часть лобной доли, на них приходится около 1/4 всей поверхности коры. Здесь хорошо выражена внутренняя зернистая пластинка, к нейрон ам которой идут волокна из медиальных ядер таламуса. Третичные поля лобной коры связаны с высшими формами целенаправленной деятельности и играют важную роль в социальном поведении. При их поражении не нарушается ощущение или движение, но человек становится пассивным, не может оценивать происходящие события и свое поведение, теряет способность к предвидению.
Источник: Физиология центральной нервной системы
Дата создания: 12.03.2008
Последнее редактирование: 12.12.2016
Третичные зоны коры головного мозга
Наиболее широко используют карту полей Бродмана, на которой кора разделена на 44 цитоархитектонические зоны (его схема была расширена до 52 полей, однако не все поля использовали). Большая часть полей представлена на рисунке ниже, однако четких границ между этими полями не существует. (Эти числа часто используют для обозначения функциональных областей, хотя Бродман отвергал подобную корреляцию.)
На рисунке ниже разным цветом выделены три основные первичные сенсорные зоны (соматическая, зрительная и слуховая) и одна первичная моторная зона. Рядом с каждой первичной сенсорной или моторной зоной расположена ассоциативная кора—унимодальная ассоциативная зона (той же модальности). Остальная часть новой коры представлена мультимодальными (полимодальными) ассоциативными зонами, к которым подходят волокна от многих унимодальных ассоциативных зон (например, от зон тактильной и зрительной чувствительности, зрительной и слуховой) и других мультимодальных или паралимбических областей.
Цитоархитектонические поля Бродмана. Окрашенные зоны:
а) Моторная (красная):
4 — первичная моторная кора
6 — на медиальной поверхности, дополнительная моторная зона
6 — на латеральной поверхности, премоторная кора
б) Сенсорная (голубая):
3/1/2 — первичная соматосенсорная кора
40 — вторичная соматосенсорная кора
17 — первичная зрительная кора 18,
19 — ассоциативная зрительная кора
41, 42 — первичная слуховая кора*
22 — ассоциативная слуховая кора
(*Первичную слуховую кору не всегда можно увидеть сбоку, так как она полностью расположена на верхней поверхности верхней височной извилины.)
Изучение функциональной анатомии. Термином коннектом обозначают «полную карту нейронных связей, охватывающих все функции мозга». Однако для создания законченной функциональной карты человеческого мозга требуется объединить эмпирические данные со структурными связями, при этом многое все еще остается неизвестным. Современные подходы создают уникальные возможности для достижения этой цели с помощью новых возможностей обработки и хранения данных, нейрофизиологических исследований и магнитно-резонансной томографии (МРТ), позволяющих получить изображения головного мозга живого человека.
Новые достижения в понимании устройства мозга ознаменовались смещением приоритета с отдельных зон коры на рассмотрение всех отделов и взаимосвязей как единого целого. Были разработаны новые теоретические и методологические схемы, позволяющие описывать и прогнозировать сложную системную динамику путем использования сетевого анализа и математических методов, основанных на теории графов. В сетевых моделях используют совокупности «элементарных» корковых единиц и их взаимодействия, чтобы показать появление функционирующих участков в динамике или «поймать мозг в действии».
Эти модели остаются ограниченными известными взаимосвязями между зонами коры, а существование некоторых взаимосвязей было предположено по результатам исследований у приматов. Однако данные модели позволяют предположить наличие взаимосвязей или проводящих путей, существование которых структурно не доказано, на основании типа реакции. Несмотря на прогресс в исследовании проводящих путей и взаимосвязей в коре при лучевой диагностике мозга живого человека благодаря использованию нейрорентгенологических методов и математического моделирования, внедрение новых и продолжение использования «старых» техник изучения нейроанатомии необходимо для получения структурных свидетельств существования этих проводящих путей и возбуждающих нейронных систем.
Для «определения и локализации» функций головного мозга используют преимущественно две методики. В основе обеих лежит регистрация локального усиления кровотока в ответ на повышенную потребность мозга в кислороде в результате увеличения нейронной активности.
1. Позитронная эмиссионная томография (ПЭТ). С помощью позитронной эмиссионной томографии (ПЭТ) измеряют потребление кислорода после введения в вену предплечья воды, меченной кислородом-15 ( 15 O). 15 O — излучающий позитроны изотоп кислорода; в крови позитроны реагируют с окружающими электронами и испускают у-лучи, которые регистрируют детекторы γ-лучей. Для измерения уровня потребления глюкозы используют также 18-фтордезоксиглюкозу ( 18 F-дезок-сиглюкоза). Нейроны захватывают 18 F-дезоксиглюкозу в той же степени, что и глюкозу.
Для правильной интерпретации данных ПЭТ требуется выполнение вычитания изображений и усреднения изображений, описанных под рисунком ниже. Аналогичная методика извлечения сигнала описана для функциональной МРТ (фМРТ).
При проведении специализированных исследований (например, при определении суммарной функции рецепторов) используют меченные изотопом химические вещества: меченный радиоизотопом дофамин в полосатом теле при болезни Паркинсона, меченный радиоизотопом серотонин в стволе мозга и коре больших полушарий при депрессии, меченую ацетилхолинэстеразу при болезни Альцгеймера.
2. Функциональная магнитно-резонансная томография (фМРТ). При фМРТ не требуется введения дополнительных веществ. Метод основан на различии в магнитных свойствах оксигенированной и неоксигенированной крови. Если локального усиления кровотока более чем достаточно для покрытия потребности в кислороде, повышается коэффициент отношения оксигемоглобина к дезоксигемоглобину, что ведет к образованию MPT-сигнала. Функциональные и структурные взаимосвязи можно выявить при взаимном изменении или колебании интенсивности фМРТ-сигнала в различных корковых зонах даже при отсутствии «прямых» кортикальных связей. Приведенные ниже данные были получены с помощью функциональных методов исследования, клинических наблюдений и результатов экспериментов на животных.
Вычитание изображений и усреднение изображений при позитронной эмиссионной томографии (ПЭТ).
Верхний. Контрольное среднее изображение получено у пациента в покое. Захват 15 O происходит во всех отделах коры и подкоркового серого вещества.
Левое изображение получено у того же пациента, следящего за движущимися по экрану точками.
Высокий уровень фоновой активности скрывает результат исследования. Правое изображение получено вычитанием контрольного изображения и позволяет увидеть повышенную активность зрительной коры при выполнении зрительной задачи.
Средний. Аналогичную задачу выполняли другие четыре пациента. Вычитание фонового «шума» позволило выявить значительные различия между пациентами.
Поскольку размеры мозга у людей варьируют, активность мозга у этих пятерых пациентов была наложена на общий, «средний» мозг (хотя мозг на всех рисунках изображен одинаково). Нижний. Усредненное значение пяти исследований указывает на среднюю разницу в этой группе.
Редактор: Искандер Милевски. Дата публикации: 22.11.2018
Кора головного мозга: участки, анализаторы
Значение, роль коры больших полушарий головного мозга человека
В статье мы рассмотрим локализацию функций, участки, анализаторы, поля, участки, области зоны коры больших полушарий головного мозга человека (мужчины, женщины). Неврологи, невропатологи, рефлексотерапевты, рефлексологи выделяют 4 основных положения, применительно к практической деятельности невропатолога, современного учения о локализации функций в коре головного мозга.
1. Очень сложная морфологическая и функциональная дифференциация коры больших полушарий головного мозга. Лобная доля больше отвечает за двигательные функции. Теменная, затылочная и височная зоны больше отвечают за чувствительные функции.
3. Формирование специальных корковых областей в процессе практической деятельности.
Функция творит центр
По Ивану Петровичу Павлову: «Функция творит центр!» В раннем детстве границы корковых центров диффузны и менее дифференцированы, и лишь по мере приобретения жизненного опыта происходит постепенная концентрация функциональных зон, в связи с чем у детей первых лет жизни слабо выражены очаговые корковые симптомы и чаще преобладает общемозговая симптоматика.
4. Существенные различия в локализации более простых и более сложных функций. Чем проще функция, тем она точнее локализована. И наоборот, наиболее сложные функции обусловлены интегративной деятельностью всего головного мозга, поэтому понятие «корковый центр» (отдел коры головного мозга, поля коры головного мозга, участки коры головного мозга, части коры головного мозга) в большинстве случаев относительное и условное. К простым корковым функциям относятся чувствительная функция, двигательная функция, зрительная функция, слуховая функция, вестибулярная функция, обонятельная функция, вкусовая функция. К сложным корковым функциям относятся речь, письмо, чтение, счет, праксис, гнозис, мышление, память.
Локализация функций и симптомов
Проводя топическую диагностику рефлексотерапевт, невролог, невропатолог, микроневропатолог, детский невролог, взрослый невролог определяет не только локализацию поражения корковых центров, но и локализацию симптомов. Простые корковые функции связаны с проекционными пластинками коры (пятой и четвертой), имеющими непосредственную связь с периферией и являющимися корковыми отделами анализаторов. Сложные корковые функции связаны с ассоциативными слоями коры (вторым и третьим). Последние слои соединены горизонтальными волокнами с другими участками коры головного мозга в пределах одного полушария и не имеют прямого выхода на периферию. Большое значение в обеспечении сложных корковых функций имеют также комиссуральные связи между полушариями, проходящими через мозолистое тело.
Простые корковые функции обычно представлены в обоих полушариях головного мозга. Сложные корковые функции чаще имеют асимметричное представительство в правом или левом полушарии головного мозга. Итак, какие бывают поля, участки, области, типы коры головного мозга, отделы, анализаторы, части коры головного мозга?
Двигательная кора головного мозга, двигательные центры головного мозга, двигательные анализатор, моторный
Главным корковым отделом двигательного анализатора, его первичным полем, является предцентральная извилина, в верхних отделах которой находится проекционная область мышц стопы, голени, бедра, в средней части – туловища и руки, в нижней трети – лица. Двигательная иннервация построена по соматотопическому принципу. На этом уровне осуществляются тонкие дифференцированные движения. Кроме того, имеются дополнительные двигательные зоны – это вторичные поля двигательного анализатора и третичные поля двигательного анализатора. Дополнительные двигательные зоны обеспечивают сложные автоматизированные двигательные акты. Например, в парацентральной дольке находятся корковые центры тазовых органов. В задних отделах верхней лобной извилины находится переднее адверсивное поле. Заднее адверсивное поле располагается на границе верхней теменной дольки и затылочной области. Задние отделы средней лобной извилины отвечают за сочетанный поворот головы и глаз в противоположную сторону. Задние отделы нижней лобной извилины осуществляет движения типа орального автоматизма – глотание, жевание, лизание.
Чувствительная кора головного мозга, чувствительные центры головного мозга, чувствительный анализатор
Главным корковым отделом поверхностных и глубоких видов чувствительности является постцентральная извилина, где также имеется соматотопическое представительство участков периферии, аналогичное вышеуказанному. К поверхностной чувствительности относятся температурная чувствительность, болевая чувствительность, тактильная чувствительность.
Стереогноз, стереогнозис
Сложные виды чувствительности локализованы в коре полушарий головного мозга на уровне верхней теменной дольки, где отсутствует соматотопика. К сложным видам чувствительности относятся стереогностическая чувствительность (стереогноз, стереогнозис), двумерно-пространственная чувствительность, чувство локализации и дискриминации. Зрительная проекционная зона (зрительная зона коры) занимает область шпорной борозды – внутренняя поверхность затылочной доли. Слуховая проекционная зона (слуховая зона коры) занимает центр верхней височной извилины и извилину Гешля. Вестибулярная проекционная зона находится рядом со слуховой. Обонятельная проекционная зона локализуется на внутренней поверхности височной доли, в извилине гиппокампа. Вкусовая проекционная зона находится рядом с последней, а также в области покрышки и островка Reili.
Теперь остановимся на локализации сложных корковых функций.
Обычно сложные корковые функции локализуются в левом полушарии головного мозга у правшей и в правом полушарии головного мозга у левшей.
Функцию речи обеспечивает сенсорный центр (центр Вернике), который располагается в заднем отделе верхней височной извилины. При поражении центра Вернике наблюдается сенсорная афазия. Также функцию речи обеспечивает двигательный центр (центр Брока), который располагается в области задних отделов нижней лобной извилины. При поражении центра Брока наблюдается моторная афазия. При патологии на стыке височной и затылочной долей формируется амнестическая афазия и семантическая афазия. Речевые зоны коры головного мозга.
Лексический анализатор, центр лексии, функция чтения
Функции чтения обеспечивает лексический центр (центр лексии). Центр лексии располагается в угловой извилине.
Графический анализатор, центр графии, функция письма
Функции письма обеспечивает графический центр (центр графии). Центр графии располагается в заднем отделе средней лобной извилины.
Счетный анализатор, центр калькуляции, функция счета
Функции счета обеспечивает счетный центр (центр калькуляции). Центр калькуляции располагается на стыке теменно-затылочной области.
Праксис, праксический анализатор, центр праксиса
Праксис – это способность к выполнению целенаправленных двигательных актов. Праксис формируется в процессе жизнедеятельности человека, начиная с грудного возраста, и обеспечивается сложной функциональной системой мозга с участием корковых полей теменной доли (нижняя теменная долька) и лобной доли, особенно левого полушария у правшей. Для нормального праксиса необходимы сохранность кинестетической и кинетической основы движений, зрительно-пространственной ориентировки, процессов программирования и контроля целенаправленных действий. Поражение праксической системы на том или ином уровне проявляется таким видом патологии, как апраксия. Термин «праксис» происходит от греческого слова «praxis», которое означает «действие». Апраксия – это нарушение целенаправленного действия при отсутствии параличей мышц и сохранности составляющих его элементарных движений.
Гностический центр, центр гнозиса
В правом полушарии у правшей, в левом полушарии головного мозга у левшей представлены многие гностические функции. При поражении преимущественно правой теменной доли может возникать анозогнозия, аутопагнозия, конструктивная апраксия. С центром гнозиса также связаны музыкальный слух, ориентация в пространстве, центр смеха.
Память, мышление
Наиболее сложные корковые функции – это память и мышление. Эти функции не имеют четкой локализации.
Память, функция памяти
Мышление, функция мышления
Функция мышления – это результат интегративной деятельности всего головного мозга, особенно лобных долей, которые участвуют в организации целенаправленной сознательной деятельности человека, мужчины, женщины. Происходят программирование, регуляция и контроль. При этом у правшей левое полушарие является основой преимущественно абстрактного словесного мышления, а правое полушарие связано главным образом с конкретным образным мышлением.
Развитие корковых функций начинается с первых месяцев жизни ребенка, достигает своего совершенства к 20 годам.
Зоны коры головного мозга
В последующих статьях мы остановимся на актуальных вопросах неврологии: зоны коры головного мозга, зоны больших полушарий, зрительная, зона коры, слуховая зона коры, моторные двигательные и чувствительные сенсорные зоны, ассоциативные, проекционные зоны, моторные и функциональные зоны, речевые зоны, первичные зоны коры головного мозга, ассоциативные, функциональные зоны, фронтальная кора, соматосенсорная зона, опухоль коры, отсутствие коры, локализация высших психических функций, проблема локализации, мозговая локализация, концепция динамической локализации функций, методы исследования, диагностики.