Устройство статора асинхронной машины

Устройство асинхронной машины

Устройство статора асинхронной машины Устройство статора асинхронной машины Устройство статора асинхронной машины Устройство статора асинхронной машины

Устройство статора асинхронной машины

Устройство статора асинхронной машины

Конструктивные формы исполнения электрических машин.

Основные сведения о серийных асинхронных двигателях.

Режимы работы асинхронной машины.

Принцип действия асинхронной машины.

Устройство асинхронной машины.

СОДЕРЖАНИЕ

Лекция № 2

Навигационных комплексов

Иркутский филиал МГТУ ГА

Иркутск, 2007 г.

Асинхронные электрические машины

Электрические машины

ЛЕКЦИЯ № 9

И ПИЛОТАЖНО-НАВИГАЦИОННЫХ КОМПЛЕКСОВ

КАФЕДРА АВИАЦИОННЫХ ЭЛЕКТРОСИСТЕМ

ИРКУТСКИЙ ФИЛИАЛ

ГРАЖДАНСКОЙ АВИАЦИИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

для студентов специальности 160903

Кафедра Авиационных электросистем и пилотажно-

Заведующий кафедрой АЭС и ПНК

к.т.н., доцент Мишин С.В.

По дисциплине: Электрические машины

Тема лекции: Асинхронные электрические машины (2 часа)

1. Копылов Б.В. Электрические машины. М., 1988 г.

НАГЛЯДНЫЕ ПОСОБИЯ, ПРИЛОЖЕНИЯ, ТСО

1. Мультимедийная установка

Обсуждено на заседании кафедры

По своей конструкции асинхронные двигатели разделяются на два вида: двигатели с короткозамкнутым ротором и двигатели с фазным ротором. Рассмотрим устройство трехфазного асинхронного двигателя с короткозамкнутым ротором (рис.1). Двигатели этого вида имеют наиболее широкое применение.

Устройство статора асинхронной машины

Рис.1. Устройство трехфазного асинхронного двигателя с короткозамкнутым ротором:

В корпусе расположен сердечник статора 6, имеющий шихтованную конструкцию: отштампованные листы из тонколистовой электротехнической стали толщиной обычно 0,5 мм покрыты слоем изоляционного лака, собраны в пакет и скреплены специальными скобами или продольными сварными швами по наружной поверхности пакета. Такая конструкция сердечника способствует значительному уменьшению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. На внутренней поверхности сердечника статора имеются продольные пазы, в которых расположены пазовые части обмотки статора, соединенные в определенном порядке лобовыми частями, находящимися за пределами сердечника по его торцовым сторонам.

Устройство статора асинхронной машины

Устройство статора асинхронной машины

Рис.2. Короткозамкнутый ротор:

а – обмотка «беличья клетка»; б – ротор с обмоткой, выполненной литьем под давлением;

Короткозамкнутая обмотка ротора в большинстве двигателей выполняется заливкой собранного сердечника ротора расплавленным алюминиевым сплавом. При этом одновременно со стержнями обмотки отливаются короткозамыкающие кольца и вентиляционные лопатки (рис.2, б).

Вал ротора вращается в подшипниках качения 1 и 11, расположенных в подшипниковых щитах 3 и 9.

Охлаждение двигателя осуществляется методом обдува наружной оребренной поверхности корпуса 13. Поток воздуха создается центробежным вентилятором 10 прикрытым кожухом 12. На торцовой поверхности этого кожуха имеются отверстия для забора воздуха. Двигатели мощностью 15 кВт и более помимо закрытого делают еще и защищенного исполнения с внутренней самовентиляцией. В подшипниковых щитах этих двигателей имеются отверстия (жалюзи), через которые воздух посредством вентилятора прогоняется через внутреннюю полость двигателя. При этом воздух «омывает» нагретые части (обмотки, сердечники) двигателя и охлаждение получается более эффективным, чем при наружном обдуве.

Концы обмоток фаз выводят на зажимы коробки выводов 4. Обычно асинхронные двигатели предназначены для включения в трехфазную сеть на два разных напряжения, отличающиеся в Устройство статора асинхронной машиныраз. Например, двигатель рассчитан для включения в сеть на напряжения 380/660 В. Если в сети линейное напряжение 660 В, то обмотку статора следует соединить звездой, а если 380 В, то треугольником. В обоих случаях напряжение на обмотке каждой фазы будет 380 В. Выводы обмоток фаз располагают на панели таким образом, чтобы соединения обмоток фаз было удобно выполнять посредством перемычек, без перекрещивания последних (рис.3). В некоторых двигателях небольшой мощности в коробке выводов имеется лишь три зажима. В этом случае двигатель может быть включен в сеть на одно напряжение (соединение обмотки статора такого двигателя звездой или треугольником выполнено внутри двигателя).

Устройство статора асинхронной машины

Рис.3. Расположение выводов обмотки статора (а) и положение перемычек

при соединении обмотки статора звездой и треугольником (б)

Монтаж двигателя в месте его установки осуществляется либо посредством лап 14 (см. рис.1), либо посредством фланца. В последнем случае на подшипниковом щите (обычно со стороны выступающего конца вала) делают фланец с отверстиями для крепления двигателя на рабочей машине. Для предохранения обслуживающего персонала от возможного поражения электрическим током двигатели снабжаются болтами заземления 15 (не менее двух). Принципиальная схема включения в трехфазную сеть асинхронного двигателя с короткозамкнутым ротором показана на рис.4, а.

Устройство статора асинхронной машины

Рис.4. Принципиальные схемы включения трехфазных асинхронных двигателей с короткозамкнутым (а) и фазным (б) ротором

Асинхронные двигатели с фазным ротором имеют более сложную конструкцию и менее надежны, но они обладают лучшими регулировочными и пусковыми свойствами, чем двигатели с короткозамкнутым ротором. Принципиальная схема включения в трехфазную сеть асинхронного двигателя с фазным ротором показана на рис.4, б. Обмотка ротора этого двигателя соединена с пусковым реостатом ПР, создающим в цепи ротора добавочное сопротивление Rдоб.

На корпусе асинхронного двигателя прикреплена табличка, на которой указаны тип двигателя, завод-изготовитель, год выпуска и номинальные данные (полезная мощность, напряжение, ток, коэффициент мощности, частота вращения и КПД).

Устройство статора асинхронной машины

Рис.5. Устройство трехфазного асинхронного двигателя с фазным ротором:

Источник

Устройство, виды и принцип действия асинхронных электродвигателей

Наука в области электричества в XIX и XX веках стремительно развивалась, что привело к созданию электрических асинхронных двигателей. С помощью таких устройств развитие промышленной индустрии шагнуло далеко вперед и теперь невозможно представить заводы и фабрики без силовых машин с использованием асинхронных электродвигателей.

Устройство статора асинхронной машины

История появления

История создания асинхронного электродвигателя начинается в 1888 году, когда Никола Тесла запатентовал схему электродвигателя, в этом же году другой ученый в области электротехники Галлилео Феррарис опубликовал статью о теоретических аспектах работы асинхронной машины.

В 1889 году российский физик Михаил Осипович Доливо-Добровольский получил в Германии патент на асинхронный трехфазный электрический двигатель.

Устройство статора асинхронной машины

Все эти изобретения позволили усовершенствовать электрические машины и привели к тому, что в промышленность стали массово применяться электрические машины, которые значительно ускорили все технологические процессы на производстве, повысили эффективность работы и снизили её трудоемкость.

В настоящий момент самый распространенный электродвигатель, эксплуатируемый в промышленности, является прототипом электрической машины, созданной Доливо-Добровольским.

Устройство и принцип действия асинхронного двигателя

Главными компонентами асинхронного электродвигателя являются статор и ротор, которые отделены друг от друга воздушным зазором. Активную работу в двигателе выполняют обмотки и сердечник ротора.

Под асинхронностью двигателя понимают отличие частоты вращения ротора от частоты вращения электромагнитного поля.

Статор – это неподвижная часть двигателя, сердечник которой выполняется из электротехнической стали и монтируется в станину. Станина выполняется литым способом из материала, который не магнитится (чугун, алюминий). Обмотки статора являются трехфазной системой, в которой провода уложены в пазы с углом отклонения 120 градусов. Фазы обмоток стандартно подключают к сети по схемам «звезда» или «треугольник».

Устройство статора асинхронной машины

Ротор – это подвижная часть двигателя. Роторы асинхронных электродвигателей бывают двух видов: с короткозамкнутым и фазным роторами. Данные виды отличаются между собой конструкциями обмотки ротора.

Асинхронный двигатель с короткозамкнутым ротором

Такой тип электрической машины был впервые запатентован М.О. Доливо-Добровольским и в народе называется «беличье колесо» из-за внешнего вида конструкции. Короткозамкнутая обмотка ротора состоит из накоротко замкнутых с помощью колец стержней из меди (алюминия, латуни) и вставленные в пазы обмотки сердечника ротора. Такой тип ротора не имеет подвижных контактов, поэтому такие двигатели очень надежны и долговечны при эксплуатации.

Асинхронный двигатель с фазным ротором

Устройство статора асинхронной машины

Такое устройство позволяет регулировать скорость работы в широком диапазоне. Фазный ротор представляет собой трехфазную обмотку, которая соединяется по схемам «звезда» или треугольник. В таких электродвигателях в конструкции имеются специальные щетки, с помощью которых можно регулировать скорость движения ротора. Если в механизм такого двигателя добавить специальный реостат, то при пуске двигателя уменьшится активное сопротивление и тем самым уменьшатся пусковые токи, которые пагубно влияют на электрическую сеть и само устройство.

Принцип действия

При подаче электрического тока на обмотки статора возникает магнитный поток. Так как фазы смещены относительно друг друга на 120 градусов, то из-за этого поток в обмотках вращается. Если ротор короткозамкнутый, то при таком вращении в роторе появляется ток, который создает электромагнитное поле. Взаимодействуя друг с другом, магнитные поля ротора и статора заставляют ротор электродвигателя вращаться. В случае, если ротор фазный, то напряжение подается на статор и ротор одновременно, в каждом механизме появляется магнитное поле, они взаимодействуют друг с другом и вращают ротор.

Достоинства асинхронных электродвигателей

С короткозамкнутым роторомС фазным ротором
1. Простое устройство и схема запуска1. Небольшой пусковой ток
2. Низкая цена изготовления2. Возможность регулировать скорость вращения
3. С увеличением нагрузки скорость вала не меняется3. Работа с небольшими перегрузками без изменения частоты вращения
4. Способен переносить перегрузки краткие по времени4. Можно применять автоматический пуск
5. Надежен и долговечен в эксплуатации5. Имеет большой вращающий момент
6. Подходит для любых условий работы
7. Имеет высокий коэффициент полезного действия

Недостатки асинхронных электродвигателей

С короткозамкнутым роторомС фазным ротором
1. Не регулируется скорость вращения ротора1. Большие габариты
2. Маленький пусковой момент2. Коэффициент полезного действия ниже
3. Высокий пусковой ток3. Частое обслуживание из-за износа щеток
4. Некоторая сложность конструкции и наличие движущихся контактов

Асинхронные электродвигатели являются очень эффективными устройствами с отличными механическими характеристиками, и благодаря этому они являются лидерами по частоте применения.

Режимы работы

Устройство статора асинхронной машины

Электродвигатель асинхронного типа универсальный механизм и по продолжительности работы имеет несколько режимов:

Продолжительный режим — основной режим работы асинхронных устройств, который характеризуется постоянной работой электродвигателя без отключений с неизменной нагрузкой. Такой режим работы самый распространенный, используется на промышленных предприятиях повсеместно.

Кратковременный режим – работает до достижения постоянной нагрузки определенное время (от 10 до 90 минут), не успевая максимально разогреться. После этого отключается. Такой режим используют при подаче рабочих веществ (воду, нефть, газ) и прочих ситуациях.

Периодический режим – продолжительность работы имеет определенное значение и по завершении цикла работ отключается. Режим работы пуск-работа-остановка. При этом он может отключаться на время, за которое не успевает остыть до внешних температур и включаться заново.

Повторно-кратковременный режим – двигатель не нагревается максимально, но и не успевает остыть до внешней температуры. Применяется в лифтах, эскалаторах и прочих устройствах.

Особый режим – продолжительность и период включения произвольный.

В электротехнике существует принцип обратимости электрических машин — это означает, что устройство может, как преобразовывать электрическую энергию в механическую, так и совершать обратные действия.

Асинхронные электродвигатели тоже соответствуют этому принципу и имеют двигательный и генераторный режим работы.

Двигательный режим – основной режим работы асинхронного электродвигателя. При подаче напряжения на обмотки возникает электромагнитный вращающий момент, увлекающий за собой ротор с валом и, таким образом, вал начинает вращаться, двигатель выходит на постоянную частоту вращения, совершая полезную работу.

Генераторный режим – основан на принципе возбуждения электрического тока в обмотках двигателя при вращении ротора. Если вращать ротор двигателя механическим способом, то на обмотках статора образуется электродвижущая сила, при наличии конденсатора в обмотках возникает емкостный ток. Если емкость конденсатора будет определенного значения, зависящего от характеристик двигателя, то произойдет самовозбуждение генератора и возникнет трехфазная система напряжений. Таким образом короткозамкнутый электродвигатель будет работать как генератор.

Источник

Асинхронный двигатель

Асинхронный двигатель – электрическая машина, работающая в двигательном режиме, у которой частота вращения ротора не равна частоте вращения магнитного поля статора и зависит также от нагрузки. Основа работы электродвигателя – преобразование электрической энергии в механическую. Трехфазный асинхронный электродвигатель был разработан и впервые создан в 1889 году русским ученым-электротехником М.О. Доливо-Добровольским. Совместно с разработкой двигателя Михаил Осипович разработал и осуществил впервые в мире в 1891 году систему передачи трехфазного тока на расстояние.

Строение асинхронного двигателя

Для того, чтобы разобраться в теории работы двигателя, нам надо рассмотреть из чего же он состоит.

Устройство статора асинхронной машины

На самом же деле асинхронный двигатель состоит из трех частей (слева-направо): ротора, статора и корпуса, но главными частями считаются именно ротор и статор, о которых мы с вами и поговорим.

Устройство статора асинхронной машины

Статор асинхронного двигателя

Статор асинхронного двигателя представляет из себя сердечник, состоящий из пластин электротехнической стали и содержащий в себе медные обмотки, которые определенным образом уложены в пазах статора.

Устройство статора асинхронной машины

Как было упомянуто, сердечник статора состоит из пластин, которые изолированы друг от друга. С внутренней стороны статора есть пазы

Устройство статора асинхронной машины

в которые укладывается изоляция

Устройство статора асинхронной машины

Далее в эти пазы наматывается медный лакированный провод определенным образом, который представляет из себя обмотки статора

Устройство статора асинхронной машины

Асинхронный двигатель имеет три «куска» медного провода

Устройство статора асинхронной машины

Которые определенным образом уложены в пазы статора под углом в 120 градусов друг относительно друга.

Устройство статора асинхронной машины

Все 6 концов обмоточных проводов выведены в клеммную коробку, которая находится на корпусе двигателя.

Устройство статора асинхронной машины

Статор двигателя, а точнее, размеры сердечника, количество катушек в каждой обмотке и толщина моточного провода из которого намотаны катушки определяют основные параметры двигателя. Например, от числа катушек в каждой обмотке зависит номинальное число оборотов двигателя, а от толщины провода, которым они намотаны, зависит номинальная мощность двигателя. Количество обмоток для трехфазного асинхронного двигателя всегда равно трем. А вот количество катушек в каждой из этих обмоток разное. Катушки могут наматывать в один или два провода. Учитывая, что номинальное число оборотов двигателя обратно пропорционально номинальной нагрузке, можно смело сказать, что скорость вращения вала асинхронного двигателя будет уменьшаться при увеличении нагрузки. Если при работе двигателя начнут уменьшаться его обороты из-за роста нагрузки, то не остановка этого процесса может привести к полной остановке двигателя. Двигатель начнет сильно гудеть, вал ротора не будет крутиться – возникнет сильный нагрев катушек, с последующим разрушением изоляции моточного провода, что приведет к короткому замыканию и возгоранию обмоток.

Реальное фото статора одного из асинхронного двигателя выглядит вот так.

Устройство статора асинхронной машины

Ротор асинхронного двигателя

Давайте более подробно рассмотрим, из чего же состоит ротор асинхронного двигателя.

Устройство статора асинхронной машины

Самая главная часть — это вал. Иначе, как бы происходило вращение?

Устройство статора асинхронной машины

На вал ротора с двух сторон надеваются подшипники, которые крепятся к передней и задней крышкам и центруют ротор ровно посередине статора.

Устройство статора асинхронной машины

Далее идет сердечник, набранный из листов специальной электротехнической стали, которые изолированы друг от друга. Кстати, сетевые трансформаторы собираются из такой же стали.

Устройство статора асинхронной машины

Устройство статора асинхронной машины

Как вы можете далее заметить, в сердечнике ротора есть специальные пазы

Устройство статора асинхронной машины

В них вставляются медные или алюминиевые стержни,

Устройство статора асинхронной машины

которые замыкаются на кольцо с обеих сторон, образуя так называемую «беличью клетку».

Устройство статора асинхронной машины

В общем виде полностью собранный ротор асинхронного двигателя выглядит вот так.

Устройство статора асинхронной машины

А вот так он выглядит в реальном двигателе.

Устройство статора асинхронной машины

Всегда помните, что в асинхронном двигателе вращается ротор, а не статор. Статор — это неподвижная часть, а ротор — подвижная часть электродвигателя. В рабочем состоянии двигателя между ротором и статором всегда имеется воздушный зазор. При работе двигателя ротор ни в коем случае не должен задевать статор двигателя.

Устройство статора асинхронной машины

Информационная табличка на двигателе (шильдик)

Полную и достоверную информацию о двигателе можно узнать, если уметь «читать» шильдик. Точнее то, что на нем написано. Начнем описание шильдика рассматриваемого двигателя сверху вниз.

Устройство статора асинхронной машины

Способы подключения асинхронного двигателя

Как мы уже с вами узнали, асинхронный двигатель имеет три обмотки. На современный манер они обозначаются английскими буквами U,V,W. Начало каждой обмотки обозначается цифрой «1», а конец обмотки цифрой «2».

Устройство статора асинхронной машины

Поэтому, есть два способа соединения обмоток: звездой и треугольником.

Способ соединения «звезда»

Способ «звезда» подразумевает соединение одинаковых выводов обмоток (начала или концы обмоток) в одну (нулевую) точку.

Устройство статора асинхронной машины

В клеммной коробке двигателя это соединение будет иметь такой вид.

Устройство статора асинхронной машины

Как вы видите, в этом случае с помощью железных пластин мы закоротили концы обмоток в одну общую точку.

Соединение таким способом практикуется, в основном, на двигателях промышленного назначения. Часто завод-изготовитель, для таких двигателей, которые не будут реализовываться через розничную сеть, производит соединение «звездой» уже внутри статора. На корпус двигателя выводится не 6 клемм, а 3. В этом случае достаточно просто подать трехфазное напряжение. Поэтому, помните: если вы увидите, что у асинхронного двигателя только 3 провода, это значит, что его обмотки уже соединены по типу «звезда».

Способ соединения «треугольник»

Соединение «треугольник» выполняется по схеме: конец первой обмотки соединяется с началом второй, конец второй – с началом третьей, а конец третьей – с началом первой. В места соединения подается питающее трехфазное напряжение.

Устройство статора асинхронной машины

В двигателе это будет выглядеть вот таким образом.

Устройство статора асинхронной машины

Устройство статора асинхронной машины

Восстановление маркировки обмоток

Если точнее, маркировка обмоток нужна только для определения направления намотки катушек обмотки. Конец и начало обмотки обозначают только с этой целью. Дело в том, что при включении обмотки в работу в ней начинают возникать вихревые токи, которые движутся по направлению «от начала к концу». Если обмотки включить по принципу «начало с началом, конец с концом», то токи суммируются, обмотки превратятся в один большой резистор и возникнет огромный суммарный ток. Двигатель начнет сильно гудеть и не будет вращаться. Очень быстро начнут нагреваться обмотки, и двигатель сгорит. Причем, вполне возможно, вспыхнет настоящее пламя оранжево-синего цвета с очень вредным и неприятным запахом.

Существует способ определения концов и начал обмоток.

Весь этот процесс очень хорошо показан на видео. Автор этого видео использовал для проверки сетевое напряжения в 220 Вольт, что я крайне не рекомендую делать. Используйте понижающие трансформаторы, либо автотрансформатор.

Подключение асинхронного двигателя к трехфазной сети

Остановимся более подробно на подключении двигателя. Завод-производитель, как правило, маркирует не только клеммы в клеммной коробке, но и концы проводов. В реальности это либо алюминиевые скобки, либо пластиковые или картонные бирки с номером провода. Обмотки в современных двигателях указывается, как U, V, W. Начало обмоток цифрой «1», а конец — цифрой «2». Как вы уже знаете, асинхронный двигатель может быть включен по схеме «звезда», а также по схеме «треугольник». В 90% случаев используется именно подключение «звезда».

Итак, у нас обмотки двигателя соединены по схеме «звезда». Куда же нам подать напряжение, чтобы двигатель начал свое вращение?

Устройство статора асинхронной машины

Оказывается, все просто. Так как в трехфазной сети у нас в основном 4 провода ( Фаза A, Фаза B, Фаза C, Земля), то соответственно, мы должны задействовать все 4 провода.

Устройство статора асинхронной машины

Есть также небольшой нюанс при подключении асинхронного двигателя к трехфазной сети. Допустим, если мы подключили двигатель по схеме выше, то у нас вал будет вращаться в одну сторону, допустим, по часовой стрелке.

Устройство статора асинхронной машины

Но если мы поменяем две любые фазы местами, то двигатель начнется вращаться в противоположном направлении. Такой эффект называется реверсивным включением асинхронного двигателя.

Устройство статора асинхронной машины

Все то же самое касается и при подключении асинхронного двигателя по схеме «треугольник». Имейте ввиду, что при включении двигателя в этом режим, мы на шильдике должны посмотреть допустимое напряжение, на которое рассчитан этот двигатель по схеме соединения «треугольник». Если по схеме «звезда» мы можем подать на такой двигатель питание 380 Вольт, то по схеме «треугольник» только 220 Вольт.

Устройство статора асинхронной машины

Устройство статора асинхронной машины

Подключение асинхронного двигателя к однофазной сети

Обратимся к конструкции трехфазного асинхронного двигателя. Как мы знаем, рабочих фаз двигателя – 3, и клемм для их подключения тоже 3. А в однофазной бытовой сети 220 Вольт проводов всего два – фаза и ноль. Что подключить на третью клемму двигателя? Если на нее подключить ответвление от любого из этих двух проводов, то мы получим просто короткое замыкание со всеми вытекающими последствиями.

Выходом является подключение такого ответвления через конденсатор. Слово «конденсатор» переводится на русский язык как «накопитель». Как известно, работает он по принципу «заряд-разряд». То есть, включенный в сеть конденсатор, какое-то время накапливает заряд, а потом, разряжаясь, отдает его обратно в сеть. Времени, в течение которого конденсатор накапливает заряд, вполне достаточно для того, чтобы фаза, от которой он питается, «ушла» вперед, сдвинулась по времени. Сдвинувшись, фаза как бы «освобождает место» для того разряда, который выдаст конденсатор, и исключает возможность «короткого» замыкания. Из-за того, что своей работой конденсатор «сдвигает» фазы, он называется фазосдвигающим. Более подробно про работу конденсатора в цепи переменного тока можно прочитать в этой статье. Таким образом, создается третий провод необходимый для подключения двигателя.

Схемы подключения к однофазной сети

Здесь все достаточно просто. Мы должны соединить конденсатор между двумя фазами. В схеме со звездой это будет выглядеть вот так.

Устройство статора асинхронной машины

Для того, чтобы поменять вращение двигателя, нам надо просто поменять местами фазу (L) и ноль (N) местами.

Устройство статора асинхронной машины

Ну и все то же самое касается и со схемой подключения «треугольник».

Устройство статора асинхронной машины

Устройство статора асинхронной машины

Как выбрать конденсатор

Устройство статора асинхронной машины

Вполне может быть так, что полученное значение окажется промежуточным. То есть таким, на которое конденсаторы не выпускаются. Например, для сети 220 В, по формуле получится 311,13 В. На такое напряжение конденсаторы не выпускались. Тогда конденсатор подбирается на ближайшее значение в большую сторону. В нашем случае можно взять конденсатор на 380 Вольт и больше.

Расчет емкости конденсатора

Расчет емкости конденсатора производится по формуле, в которой учитывается схема соединения обмоток двигателя. Дело в том, что при расчете емкости учитывается не только рабочее напряжение сети, но и ток, протекающий по обмоткам двигателя. Большую роль играет и тот факт, что во время запуска двигателя, в обмотках возникает так называемый пусковой ток, который намного больше рабочего тока двигателя. А так как рабочий ток двигателя зависит от схемы включения обмоток, то естественно, и пусковой ток будет тоже зависеть от этой схемы.

Итак, формула расчета конденсатора:

Устройство статора асинхронной машины

С – искомая емкость конденсатор, мкФ

К – коэффициент, зависящий от схемы подключения обмоток

IН – номинальный ток двигателя, Амперы

U – напряжение сети, Вольты

Коэффициент К будет равен 4800 при соединении обмоток «треугольником», и 2800 – при соединении «звездой». В качестве примера, можно рассчитать емкость для рассматриваемого здесь двигателя, взяв необходимые данные с его шильдика.

Устройство статора асинхронной машины

Соединение «треугольник»: С = 2,3 × 4800/220 = 50,2. Полученное значение оказалось дробным, поэтому округлим его до целого в большую сторону. Итак, нам нужен конденсатор емкостью 51 мкФ на напряжение 380 В.

Выбор типа конденсатора

Конденсатор, емкость и рабочее напряжение, которого мы определили, должен быть подходящего типа. Как известно, конденсаторы разделяются на два типа: полярные и неполярные. Полярные имеют обозначение «+» и «-» на выводах и применяются в цепях постоянного тока. Неполярные обозначений на выводах не имеют и работают в любых цепях. Кроме того, по способу изготовления они разделяются на электролитические и не электролитические. Электролитические конденсаторы применяются в основном, в радиотехнике и электронике, и чаще всего, бывают полярными. Они в качестве фазосдвигающих не годятся, даже если подходят по емкости и напряжению. Лучшие конденсаторы для работы с двигателями – металлобумажные. Это один из видов неполярных конденсаторов. Пригодные марки – МБГЧ, МБН, К42-19.

Итак, конденсатор подобран и подключен, обмотки собраны правильно, провода присоединены к клеммам – включаем двигатель в сеть и понимаем, что он не развивает ту мощность, которая указана на шильдике. Это – нормально. Таковы законы индуктивности и электродинамики – об этом нужно помнить. Трехфазный двигатель, подключенный к однофазной сети через конденсатор, развивает не более 60-65% от номинальной мощности.

Теория и подключение пускового конденсатора

Выше по тексту, уже было сказано, что во время запуска двигателя возникает пусковой ток, намного превышающий рабочий ток двигателя. Поэтому, если мы оставим только рассчитанный нами конденсатор, мы не учтем наличие пускового тока. Двигатель будет трогаться очень медленно, наращивая обороты понемногу.

Для устранения этого эффекта, параллельно рабочему конденсатору подключают пусковой конденсатор. Все его характеристики должны были быть такими же, как у рабочего конденсатора, кроме емкости. Его емкость равна емкости рабочего конденсатора, умноженной на 2,5.

Подключается пусковой конденсатор параллельно рабочему. Время его включения – краткосрочное, только до того момента, когда двигатель наберет стабильные обороты. Как правило, подключают пусковой конденсатор через кнопку без фиксации. То есть, пока кнопку удерживают в нажатом состоянии, пусковой конденсатор подключен к клеммам двигателя.

Как проверить двигатель перед запуском

Перед тем, как запустить асинхронный двигатель в работу, желательно его проверить на работоспособность. С чего же начать?

Внешний осмотр двигателя. Проверьте, нет ли сколов, вмятин, покрутите вал двигателя. Он должен крутиться плавно и без рывков в обе стороны. Этим действием вы проверяете подшипники, на которых держится ротор двигателя. Если вал двигателя подклинивает, то на это могут быть несколько причин: разбиты посадочные места под подшипники, убитые подшипники, либо ротор затирает статор. Для того, чтобы выяснить причину, нужно будет полностью разобрать двигатель и выяснить реальную проблему. Если все ок, то двигаемся к следующему шагу.

Проверяем обмотки двигателя. Для этого берем мультиметр, ставим его на измерение сопротивления и проверяем сопротивление обмоток. Если обмотки подключены по схеме «звезда», то нам будет достаточно замерять сопротивление между клеммами, куда подается напряжение питания. Делается это в три этапа.

Устройство статора асинхронной машины

Устройство статора асинхронной машины

Устройство статора асинхронной машины

Во всех трех случаях сопротивление должно быть одинаково. Допускается отклонение в несколько Ом.

Этими тремя действиями мы проверили обмотки нашего двигателя и убедились, что они все целые.

И заключительный шаг. Проверяем, не звонятся ли обмотки на землю. Так как все обмотки так или иначе соединяются между собой, достаточно будет встать щупом мультиметра на любую из обмоток, а вторым щупом встать на корпус двигателя. Переключатель на мультиметре поставить на измерение МОм.

Устройство статора асинхронной машины

В идеале должно получиться бесконечно большое сопротивление, в реале от 100 МОм и выше. Если сопротивление очень маленькое, что то около 1-10 Ом, то это означает, что какая-то из обмоток двигателя звонится на землю, что категорически недопустимо. На практике если же сопротивление меньше 1 МОм, то надо выяснить причину и устранить ее. Скорее всего в двигатель попала влага, грязь, либо произошел пробой диэлектрика медного провода. В этом случае поможет только полная разборка и визуальное выяснение причины.

Все те же самые операции применяются и к двигателю со схемой подключения «треугольник».

Большинство материала для статьи «асинхронный двигатель» было взято из видео ниже. Обязательно к просмотру.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *