python и машинное обучение себастьян рашка

Python и машинное обучение

Машинное обучение и прогнозная аналитика преобразуют традиционную схему функционирования предприятий и других организаций. Эта книга предоставит вам доступ в мир прогнозной аналитики и продемонстрирует, почему Python является одним из ведущих языков науки о данных. Если вы хотите глубже и точнее анализировать данные либо нуждаетесь в усовершенствовании и расширении систем машинного обучения, эта книга окажет вам неоценимую помощь. Ознакомившись с широким кругом мощных программных библиотек Python, в том числе scikit-learn, Theano и Keras, а также получив советы по всем вопросам начиная с анализа мнений и заканчивая нейронными сетями, вы сможете принять важные решения, во многом определяющие деятельность вашей организации.

Чему вы научитесь, прочитав эту книгу:
• исследовать, как используются разные машинно-обучаемые модели, которые формулируют те или иные вопросы в отношении данных;
• конструировать нейронные сети при помощи библиотек Theano и Keras;
• писать красивый и лаконичный программный код на Python с оптимальным использованием созданных вами алгоритмов;
• встраивать вашу машинно-обучаемую модель в веб-приложение для повышения ее общедоступности;
• предсказывать непрерывнозначные результаты при помощи регрессионного анализа;
• обнаруживать скрытые повторяющиеся образы и структуры в данных посредством кластерного анализа;
• организовывать данные с помощью эффективных методов предобработки и использовать передовые практические подходы к оценке машиннообучаемых моделей;
• осуществлять анализ мнений, позволяющий подробнее интерпретировать текстовые данные и информацию из социальных сетей.

Если вы хотите узнать, как использовать Python, чтобы начать отвечать на критические вопросы в отношении ваших данных, возьмите данную книгу — и неважно, хотите ли вы приступить к изучению науки о данных с нуля или же намереваетесь расширить о ней свои знания, это принципиальный ресурс, который нельзя упускать.

Крайне необходимое издание по новейшей предсказательной аналитике для более глубокого понимания методологии машинного обучения!

Источник

Python и машинное обучение (2017)

python и машинное обучение себастьян рашка

Название книги: Python и машинное обучение
Год: 2017
Автор: Себастьян Рашка
Язык: Русский
Формат: pdf, epub
Размер: 138.1 МВ, 30 MB

Описание книги «Python и машинное обучение»:

Наверное, не стоит и говорить, что машинное обучение стало одной из самых захватывающих технологий современности. Такие крупные компании, как Google, Facebook, Apple, Amazon, IBM, и еще многие другие небезосновательно вкладывают значительный капитал в разработку методов и программных приложений в области машинного обучения.

Книга предоставит вам доступ в мир прогнозной аналитики и продемонстрирует, почему Python является одним из лидирующих языков науки о данных. Охватывая широкий круг мощных библиотек Python, в том числе scikit-learn, Theano и Keras, предлагая руководство и советы по всем вопросам, начиная с анализа мнений и заканчивая нейронными сетями, книга ответит на большинство ваших вопросов по машинному обучению.

Издание предназначено для специалистов по анализу данных, находящихся в поисках более широкого и практического понимания принципов машинного обучения.

Если вы хотите стать практиком в области машинного обучения, более основательным решателем задач или, возможно, даже обдумываете карьеру в научно-исследовательской области, связанной с машинным обучением, то эта книга для вас!

Глава 1: Наделение компьютеров способностью обучаться на данных

Глава 2: Тренировка алгоритмов машинного обучения для задачи классификации

Глава 3: Обзор классификаторов с использованием библиотеки scikit-learn

Глава 4: Создание хороших тренировочных наборов-предобработка данных

Глава 5: Сжатие данных путем снижения размерности

Глава 6: Изучение наиболее успешных методов оценки моделей и тонкой настройки гиперпараметров

Глава 7: Объединение моделей для методов ансамблевого обучения

Глава 8: Применение алгоритмов машинного обучения в анализе мнений

Глава 9:Встраивание алгоритма машинного обучения в веб-приложение

Глава 10: Прогнозирование значений непрерывной целевой переменной на основе регрессионного анализа

Глава 11: Работа с немаркированными данными — кластерный анализ

Глава 12: Тренировка искусственных нейронных сетей для распознавания изображений

Глава 13: Распараллеливание тренировки нейронных сетей при помощи Theano

Источник

Рашка, Мирджалили: Python и машинное обучение. Машинное и глубокое обучение с использованием Python, scikit-learn

Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn

Аннотация к книге «Python и машинное обучение. Машинное и глубокое обучение с использованием Python, scikit-learn»

Книга является всеобъемлющим руководством по машинному и глубокому обучению с использованием языка Python. Она служит как пошаговым учебным пособием, так и справочником, к которому вы постоянно будете возвращаться в ходе построения систем машинного обучения.

Книга наполнена четкими пояснениями, визуальными представлениями, работающими примерами и детально раскрывает все важные методики машинного обучения. В то время как некоторые книги учат вас следовать инструкциям, Рашка и Мирджалили излагают принципы, лежащие в основе машинного обучения, что позволит вам самостоятельно строить модели и приложения.

Третье издание книги обновлено с целью учета версии библиотеки TensorFlow 2 и последних добавлений в scikit-learn. Оно расширено для охвата двух самых современных методик машинного обучения: обучения с подкреплением и порождающих состязательных сетей.

Эта книга — ваш попутчик в машинном обучении с применением Python, будь вы разработчиком приложений на языке.

Книга является всеобъемлющим руководством по машинному и глубокому обучению с использованием языка Python. Она служит как пошаговым учебным пособием, так и справочником, к которому вы постоянно будете возвращаться в ходе построения систем машинного обучения.

Книга наполнена четкими пояснениями, визуальными представлениями, работающими примерами и детально раскрывает все важные методики машинного обучения. В то время как некоторые книги учат вас следовать инструкциям, Рашка и Мирджалили излагают принципы, лежащие в основе машинного обучения, что позволит вам самостоятельно строить модели и приложения.

Третье издание книги обновлено с целью учета версии библиотеки TensorFlow 2 и последних добавлений в scikit-learn. Оно расширено для охвата двух самых современных методик машинного обучения: обучения с подкреплением и порождающих состязательных сетей.

Эта книга — ваш попутчик в машинном обучении с применением Python, будь вы разработчиком приложений на языке Python, не знакомым с машинным обучением, или разработчиком, желающим углубить свои знания в современных областях.

Основные темы книги
Фреймворки, модели и методики, которые позволяют машинам «учиться» на основе данных
Использование scikit-learn для машинного обучения и TensorFlow для глубокого обучения
Применение машинного обучения для классификации изображений, смыслового анализа, создания интеллектуальных веб-приложений и многого другого
Построение и обучение нейронных сетей, порождающих состязательных сетей и других моделей
Реализация веб-приложений с искусственным интеллектом
Выполнение очистки и подготовки данных для машинного обучения
Классификация изображений с использованием глубоких сверточных нейронных сетей
Рекомендуемые приемы для оценки и настройки моделей
Прогнозирование непрерывных целевых результатов с использованием регрессионного анализа
Обнаружение скрытых шаблонов и структуры в данных с помощью кластеризации
Углубление в текстовые данные и данные социальных сетей с применением смыслового анализа
Прикладное машинное обучение с прочным теоретическим фундаментом.

Новое издание пересмотрено и расширено с целью охвата TensorFlow 2, порождающих состязательных сетей (GAN) и обучения с подкреплением. Книга является всеобъемлющим руководством по машинному и глубокому обучению с использованием языка Python. Она служит как пошаговым учебным пособием, так и справочником, к которому вы постоянно будете возвращаться в ходе построения систем машинного обучения.

Книга наполнена четкими пояснениями, визуальными представлениями и работающими примерами, детально раскрывая все важные методики машинного обучения. В то время как некоторые книги учат вас следовать инструкциям, Рашка и Мирджалили излагают принципы, лежащие в основе машинного обучения, что позволит вам самостоятельно строить модели и приложения.

Обновленное с учетом библиотеки TensorFlow 2.0 третье издание предлагает читателям ознакомиться с ее новыми средствами API-интерфейса Keras, а также с последними добавлениями в scikit-learn. Оно расширено для охвата самых современных методик обучения с подкреплением, основанных на глубоком обучении, и введения в порождающие состязательные сети. Наконец, в книге также проводится исследование подобласти обработки естественного языка (NLP), называемой смысловым анализом, что поможет вам использовать алгоритмы машинного обучения для классификации документов.

Книга обсуждается в отдельном сообщении в блоге Виктора Штонда.
3-е издание.

Источник

Python и машинное обучение

Машинное обучение и прогнозная аналитика преобразуют традиционную схему функционирования предприятий и других организаций. Эта книга предоставит вам доступ в мир прогнозной аналитики и продемонстрирует, почему Python является одним из ведущих языков науки о данных. Если вы хотите глубже и точнее анализировать данные либо нуждаетесь в усовершенствовании и расширении систем машинного обучения, эта книга окажет вам неоценимую помощь. Ознакомившись с широким кругом мощных программных библиотек Python, в том числе scikit-learn, Theano и Keras, а также получив советы по всем вопросам начиная с анализа мнений и заканчивая нейронными сетями, вы сможете принять важные решения, во многом определяющие деятельность вашей организации.

Чему вы научитесь, прочитав эту книгу:
• исследовать, как используются разные машинно-обучаемые модели, которые формулируют те или иные вопросы в отношении данных;
• конструировать нейронные сети при помощи библиотек Theano и Keras;
• писать красивый и лаконичный программный код на Python с оптимальным использованием созданных вами алгоритмов;
• встраивать вашу машинно-обучаемую модель в веб-приложение для повышения ее общедоступности;
• предсказывать непрерывнозначные результаты при помощи регрессионного анализа;
• обнаруживать скрытые повторяющиеся образы и структуры в данных посредством кластерного анализа;
• организовывать данные с помощью эффективных методов предобработки и использовать передовые практические подходы к оценке машиннообучаемых моделей;
• осуществлять анализ мнений, позволяющий подробнее интерпретировать текстовые данные и информацию из социальных сетей.

Если вы хотите узнать, как использовать Python, чтобы начать отвечать на критические вопросы в отношении ваших данных, возьмите данную книгу — и неважно, хотите ли вы приступить к изучению науки о данных с нуля или же намереваетесь расширить о ней свои знания, это принципиальный ресурс, который нельзя упускать.

Крайне необходимое издание по новейшей предсказательной аналитике для более глубокого понимания методологии машинного обучения!

Источник

Python и машинное обучение, Рашка С., 2017

К сожалению, на данный момент у нас невозможно бесплатно скачать полный вариант книги.

Но вы можете попробовать скачать полный вариант, купив у наших партнеров электронную книгу здесь, если она у них есть наличии в данный момент.

Также можно купить бумажную версию книги здесь.

Python и машинное обучение, Рашка С., 2017.

Книга предоставит вам доступ в мир прогнозной аналитики и продемонстрирует, почему Python является одним из лидирующих языков науки о данных. Охватывая широкий круг мощных библиотек Python, в том числе scikit-learn, Theano и Keras, предлагая руководство и советы по всем вопросам, начиная с анализа мнений и заканчивая нейронными сетями, книга ответит на большинство ваших вопросов по машинному обучению.
Издание предназначено для специалистов по анализу данных, находящихся в поисках более широкого и практического понимания принципов машинного обучения.

python и машинное обучение себастьян рашка

Учитывая, что производительность таких интерпретируемых языков, как Python, для вычислительно-емких задач хуже, чем у языков программирования более низкого уровня, были разработаны дополнительные библиотеки, такие как NumPy и SciPy, которые опираются на низкоуровневые реализации на Fortran и С для быстродействующих и векторизованных операций на многомерных массивах.

Для выполнения задач программирования машинного обучения мы главным образом будем обращаться к библиотеке scikit-learn, которая на сегодня является одной из самых популярных и доступных библиотек машинного обучения с открытым исходным кодом.

По кнопкам выше и ниже «Купить бумажную книгу» и по ссылке «Купить» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Найти похожие материалы на других сайтах» можно найти похожие материалы на других сайтах.

On the buttons above and below you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *