уравнения с десятичными дробями 6 класс примеры для тренировки с ответами
Тренировочные задания по математике на тему «Уравнение. Десятичные дроби»
Ищем педагогов в команду «Инфоурок»
по теме «Уравнения с десятичными дробями»
1. Решите уравнения
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
Тренировочная работа по математике для 5 или 6 класса по теме «Уравнения. Десятичные дроби». Работа представлена в двух вариантах по десять заданий в каждом. Данная работа предназначена для отработки навыков решения уравнений в десятичных дробях, а также одновременная отработка навыков деления десятичных дробей, упрощение выражений, приведение подобных слагаемых.
Номер материала: ДБ-1508050
Международная дистанционная олимпиада Осень 2021
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Безлимитный доступ к занятиям с онлайн-репетиторами
Выгоднее, чем оплачивать каждое занятие отдельно
В школе в Пермском крае произошла стрельба
Время чтения: 1 минута
Новый ГОСТ на окна с защитой для детей вступает в силу 1 ноября
Время чтения: 1 минута
Рособрнадзор открыл горячую линию по вопросам контрольных в школах
Время чтения: 1 минута
Минобрнауки утвердило перечень олимпиад для школьников на 2021-2022 учебный год
Время чтения: 1 минута
В Минобрнауки разрешили вузам продолжить удаленную работу после 7 ноября
Время чтения: 1 минута
Минобрнауки утвердило перечень вступительных экзаменов в вузы
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Математика 6 Самостоятельная 38
Самостоятельная работа по математике в 6 классе «Решение уравнений» по УМК Мерзляк в 4 вариантах с ответами. Цитаты из пособия «Математика 6 класс. Дидактические материалы / Мерзляк и др.» использованы в учебных целях. Математика 6 Самостоятельная 38: Решение уравнений. Используется в комплекте с учебником «Математика 6 класс» авторов: Мерзляк, Полонский, Якир.
Самостоятельная работа по математике:
Решение уравнений. Вариант 1
Математика 6 класс (Мерзляк)
Самостоятельная работа № 38. Вариант 2
Тексты заданий (транскрипт)
Вариант 3.
Вариант 4.
ОТВЕТЫ на самостоятельную работу
СР-38. Решение уравнений. Ответы на Вариант 1
№ 200. 1) 6; 2) 3; 3) 5; 4) –1; 5) 5; 6) –24.
№ 201. 1) 4; 2) 3; 3) –3,5; 4) 3,9; 5) –27; 6) –3/4.
№ 202. 1) нет решений; 2) любое число.
СР-38. Решение уравнений. Ответы на Вариант 2
№ 200. 1) 8; 2) 2; 3) 7; 4) 8; 5) 5; 6) –18.
№ 201. 1) 6; 2) –11; 3) –5; 4) 3,6; 5) –64; 6) –9/7 = –1 2/7.
№ 202. 1) любое число; 2) нет решений.
СР-38. Решение уравнений. Ответы на Вариант 3
№ 200. 1) 4; 2) 4; 3) 7; 4) 9; 5) 4; 6) –24.
№ 201. 1) 7; 2) –17; 3) 2; 4) –1,4; 5) 8; 6) 6.
№ 202. 1) любое число; 2) нет решений.
СР-38. Решение уравнений. Ответы на Вариант 4
№ 200. 1) 3; 2) 4; 3) 4; 4) –1; 5) 5; 6) –18.
№ 201. 1) 5; 2) 2; 3) –6; 4) –2,1; 5) –36; 6) 4.
№ 202. 1) нет решений; 2) любое число.
Вы смотрели «Самостоятельные работы. Математика 6 Самостоятельная № 38: Решение уравнений». Цитаты упражнений из пособия для учащихся «Математика 6 класс. Дидактические материалы / Мерзляк и др.», которое используется в комплекте с учебником «Математика 6 класс» авторов: Мерзляк и др.
Решение уравнений с дробями
5 класс, 6 класс, 7 класс
Понятие дроби
Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.
Дробь — это запись числа в математике, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которое можно представить число. Есть два формата записи:
Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.
Дроби бывают двух видов:
Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.
Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3\5.
Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:
Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Решить уравнение значит найти все его корни или убедиться, что корней нет.
Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении: Ты можешь записаться на онлайн-уроки по математике для учеников 1-11 классов! Понятие дробного уравненияДробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так: Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе. Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры: На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное. Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение. Как решать уравнения с дробямиА теперь еще несколько способов, которые пригодятся ребенку на уроках математики. 1. Метод пропорцииЧтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает. Итак, у нас есть линейное уравнение с дробями: В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь. После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели. 2. Метод избавления от дробейВозьмем то же самое уравнение, но попробуем решить его по-другому. В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать: Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля! Вот так просто мы получили тот же ответ, что и в прошлый раз. А вот и полезные видео для закрепления материала: Примеры решения дробных уравненийЧтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек. Пример 1. Решить дробное уравнение: 1/x + 2 = 5. Пример 2. Найти корень уравнения Пример 3. Решить дробное уравнение: Если x = 3 — знаменатель тоже равен нулю. Если нужно решить уравнение с дробями быстро — поможет онлайн-калькулятор дробей. Пользуйтесь им, если уже разобрались с темой и щелкаете задачки легко и без помощников: Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕) Записаться на марафон Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕) Уравнения с десятичными дробями 6 класс примеры для тренировки с ответами§ 31. Задачи и примеры на все действия с десятичными дробями. Выполнить указанные действия: 767. Найти частное от деления: 776. Неизвестное число умножили на разность чисел 1 и 0,57 и в произведении получили 3,44. Найти неизвестное число. 777. Сумму неизвестного числа и 0,9 умножили на разность между 1 и 0,4 и в произведении получили 2,412. Найти неизвестное число. 778. По данным диаграммы о выплавке чугуна в РСФСР (рис. 36) составить задачу, для решения которой надо применить действия сложения, вычитания и деления. 779. 1) Длина Суэцкого канала 165,8 км, длина Панамского канала меньше Суэцкого на 84,7 км, а длина Беломорско-Балтийского канала на 145,9 км больше длины Панамского. Какова длина Беломорско-Балтийского канала? 2) Московское метро (к 1959 г.) было построено в 5 очередей. Длина первой очереди метро 11,6 км, второй —14,9 км, длина третьей на 1,1 км меньше длины второй очереди, длина четвёртой очереди на 9,6 км больше третьей очереди, а длина пятой очереди на 11,5 км меньше четвёртой. Чему равна длина Московского метро к началу 1959 г.? 780. 1) Наибольшая глубина Атлантического океана 8,5 км, наибольшая глубина Тихого ркеана на 2,3 км больше глубины Атлантического океана, а наибольшая глубина Северного Ледовитого океана в 2 раза меньше наибольшей глубины Тихого океана. Какова наибольшая глубина Северного Ледовитого океана? 2) Автомобиль «Москвич» на 100 км пути расходует 9 л бензина, автомобиль «Победа» на 4,5 л больше, чем расходует «Москвич», а «Волга» в 1,1 раза больше «Победы». Сколько бензина расходует автомобиль «Волга» на 1 км пути? (Ответ округлить с точностью до 0,01 л.) 781. 1) Ученик во время каникул поехал к дедушке. По железной дороге он ехал 8,5 часа, а от станции на лошадях 1,5 часа. Всего он проехал 440 км. С какой скоростью ученик ехал по железной дороге, если на лошадях он ехал со скоростью 10 км в час? 2) Колхознику надо было быть в пункте, находящемся на расстоянии 134,7 км от его дома. 2,4 часа он ехал на автобусе со средней скоростью 55 км в час, а остальную часть пути он прошёл пешком со скоростью 4,5 км в час. Сколько времени он шёл пешком? 782. 1) За лето один суслик уничтожает около 0,12 ц хлеба. Пионеры весной истребили на 37,5 га 1 250 сусликов. Сколько хлеба сохранили школьники для колхоза? Сколько сбережённого хлеба приходится на 1 га? 2) Колхоз подсчитал, что, уничтожив сусликов на площади в 15 га пашни, школьники сберегли 3,6 т зерна. Сколько сусликов в среднем уничтожено на 1 га земли, если один суслик за лето уничтожает 0,012 т зерна? 783. 1) При размоле пшеницы на муку теряется 0,1 её веса, а при выпечке получается припёк, равный 0,4 веса муки. Сколько печёного хлеба получится из 2,5 т пшеницы? 2) Колхоз собрал 560 т семян подсолнуха. Сколько подсолнечного масла изготовят из собранного зерна, если вес зерна составляет 0,7 веса семян подсолнуха, а вес полученного масла составляет 0,25 веса зерна? 784. 1) Выход сливок из молока составляет 0,16 веса молока, а выход масла из сливок составляет 0,25 веса сливок. Сколько требуется молока (по весу) для получения 1 ц масла? 2) Сколько килограммов белых грибов надо собрать для получения 1 кг сушёных, если при подготовке к сушке остаётся 0,5 веса, а при сушке остаётся 0,1 веса обработанного гриба? 785. 1) Земля, отведённая колхозу, использована так: 55% её занято пашней, 35% —лугом, а вся остальная земля в количестве 330,2 га отведена под колхозный сад и под усадьбы колхозников. Сколько всего земли в колхозе? 2) Колхоз засеял 75% всей посевной площади зерновыми культурами, 20% —овощными, а остальную площадь кормовыми травами. Сколько посевной площади имел колхоз, если кормовыми травами он засеял 60 га? 786. 1) Сколько центнеров семян потребуется для засева поля, имеющего форму прямоугольника длиной 875 м и шириной 640 м, если на 1 га высевать 1,5 ц семян? 2) Сколько центнеров семян потребуется для засева поля, имеющего форму прямоугольника, если его периметр равен 1,6 км? Ширина поля 300 м. На засев 1 га требуется 1,5 ц семян. 787. Сколько пластинок квадратной формы со стороной в 0,2 дм поместится в прямоугольнике размером 0,4 дм х 10 дм? 788. Читальный зал имеет размеры 9,6 м х 5м х 4,5 м. На сколько мест рассчитан читальный зал, если на каждого человека необходимо 3 куб. м воздуха? 789. 1) Какую площадь луга скосит трактор с прицепом четырёх косилок за 8 час, если ширина захвата каждой косилки 1,56 м и скорость трактора 4,5 км в час? (Время на остановки не учитывается.) (Ответ округлить с точностью до 0,1 га.) 2) Ширина захвата тракторной овощной сеялки равна 2,8 м. Какую площадь можно засеять этой сеялкой за 8 час. работы при скорости 5 км в час? 790. 1) Найти выработку трёхкорпусного тракторного плуга за 10 час. работы, если скорость трактора 5 км в час, захват одного корпуса 35 см, а непроизводительная трата времени составила 0,1 всего затраченного времени. (Ответ округлить с точностью до 0,1 га.) 2) Найти выработку пятикорпусного тракторного плуга за 6 час. работы, если скорость трактора 4,5 км в час, захват одного корпуса 30 см, а непроизводительная трата времени составила 0,1 всего затраченного времени. (Ответ округлить с точностью до 0,1 га.) 791. Расход воды на 5 км пробега для паровоза пассажирского поезда равен 0,75 т. Водяной бак тендера вмещает 16,5 т воды. На сколько километров пути хватит воды поезду, если бак был наполнен на 0,9 своей вместимости? 792. На запасном пути могут поместиться только 120 товарных вагонов при средней длине вагона в 7,6 м. Сколько поместится на этом пути четырёхосных пассажирских вагонов длиной в 19,2 м каждый, если на этом пути будут помещены ещё 24 товарных вагона? 793. Для прочности железнодорожной насыпи рекомендуется производить укрепление откосов посредством посева полевых трав. На каждый квадратный метр насыпи требуется 2,8 г семян стоимостью 0,25 руб. за 1 кг. Сколько будет стоить засев 1,02 га откосов, если стоимость работ составит 0,4 от стоимости семян? (Ответ округлить с точностью до 1 руб.) 794. Кирпичный завод доставил на станцию железной дороги кирпичи. На перевозке кирпичей работали 25 лошадей и 10 грузовых машин. Каждая лошадь перевозила 0,7 т за одну поездку и в день совершала 4 поездки. Каждая машина перевозила за одну поездку 2,5 т и в день совершала 15 поездок. Перевозка продолжалась 4 дня. Сколько штук кирпичей было доставлено на станцию, если средний вес одного кирпича 3,75 кг? (Ответ округлить с точностью до 1 тыс. штук.) 795. Запас муки был распределён между тремя пекарнями: первая получила 0,4 всего запаса, вторая 0,4 остатка, а третья пекарня получила муки на 1,6 т меньше, чем первая. Сколько всего муки было распределено? 796. На втором курсе института 176 студентов, на третьем 0,875 этого числа, а на первом в полтора раза больше того, что было на третьем курсе. Число студентов на первом, втором и третьем курсах составляло 0,75 всего числа студентов этого института. Сколько студентов было в институте? 797. Найти среднее арифметическое: 1) двух чисел: 56,8 и 53,4; 705,3 и 707,5; 2) трёх чисел: 46,5; 37,8 и 36; 0,84; 0,69 и 0,81; 3) четырёх чисел: 5,48; 1,36; 3,24 и 2,04. 798. 1) Утром температура была 13,6°, в полдень 25,5°, а вечером 15,2°. Вычислить среднюю температуру за этот день. 2) Какова средняя температура за неделю, если в течение недели термометр показал: 21°; 20,3°; 22,2°; 23,5°; 21,1°; 22,1°; 20,8°? 799. 1) Школьная бригада в первый день прополола 4,2 га свёклы, во второй день 3,9 га, а в третий 4,5 га. Определять среднюю выработку бригады за день. 2) Для установления нормы времени на изготовление новой детали были поставлены 3 токаря. Первый изготовил деталь за 3,2 мин., второй за 3,8 мин., а третий за 4,1 мин. Вычислить норму времени, которая была установлена на изготовление детали. 800. 1) Среднее арифметическое двух чисел 36,4. Одно из этих чисел 36,8. Найти другое. 2) Температуру воздуха измеряли три раза в день: утром, в полдень и вечером. Найти температуру воздуха утром, если в полдень было 28,4°, вечером 18,2° тепла, а средняя температура дня 20,4°. 801. 1) Автомобиль проехал за первые два часа 98,5 км, а за последующие три часа 138 км. Сколько километров в среднем проезжал автомобиль в час? 2) Пробный улов и взвешивание карпов-годовичков показал, что из 10 карпов 4 имели вес по 0,6 кг, 3 по 0,65 кг, 2 по 0,7 кг и 1 весил 0,8 кг. Каков в среднем вес карпа-годовичка? 802. 1) К 2 л сиропа стоимостью 1,05 руб. за 1 л добавили 8 л воды. Сколько стоит 1 л полученной воды с сиропом? 2) Хозяйка купила банку консервированного борща объёмом 0,5 л за 36 коп. и прокипятила с 1,5 л воды. Во что обошлась тарелка борща, если её объём равен 0,5 л? 803. Лабораторная работа «Измерение расстояния между двумя точками», 1-й приём. Измерение рулеткой (мерной лентой). Класс разбивается на звенья по три человека в каждом. Принадлежности: 5—6 вех и 8—10 бирок. Ход выполнения работы: 1) отмечаются точки А и Б и между ними провешивают прямую (см. задачу 178); 2) укладывают рулетку, вдоль провешенной прямой и каждый раз отмечают биркой конец рулетки. 2-й приём. Измерение, шагами. Класс разбивается на звенья по три человека в каждом. Каждый учащийся проходит расстояние от А до Б, считая число своих шагов. Умножив среднюю длину своего шага на полученное число шагов, находят расстояние от А до Б. 804. 1) По переписи 1959 г. население СССР составляло 208,8 млн. человек, причем сельского населения было на 9,2 млн. человек больше, чем городского. Сколько было городского и сколько сельского населения в СССР в 1959 г.? 2) По переписи 1913 г. население России составляло 159,2 млн. человек, причём городского населения было на 103,0 млн. человек меньше, чем сельского. Сколько было городского и сельского населения в России в 1913 г.? 805. 1) Длина проволоки 24,5 м. Эту проволоку разрезали на две части так, что первая часть получилась на 6,8 м длиннее, чем вторая. Сколько метров длины имеет каждая часть? 2) Сумма двух чисел 100,05. Одно число на 97,06 больше другого. Найти эти числа. 806. 1) На трёх угольных складах 8656,2 т угля, на втором складе на 247,3 т угля больше, чем на первом, а на третьем на 50,8 т больше, чем на втором. Сколько тонн угля на каждом складе? 2) Сумма трёх чисел 446,73. Первое число меньше второго на 73,17 и больше третьего на 32,22. Найти эти числа. 807. 1) Катер по течению реки шёл со скоростью 14,5 км в час, а против течения со скоростью 9,5 км в час. Какова скорость катера в стоячей воде и какова скорость течения реки? 2) Пароход прошёл за 4 часа по течениию реки 85,6 км, а против течения за 3 часа 46,2 км. Какова скорость парохода в стоячей воде и какова скорость течения реки? 808. 1) Два парохода доставили 3 500 т груза, причём один пароход доставил в 1,5 раза груза больше, чем другой. Сколько груза доставил каждый пароход? 2) Площадь двух комнат 37,2 кв. м. Площадь одной комнаты в 2 раза больше другой. Чему равна площадь каждой комнаты? 809. 1) Из двух населённых пунктом, расстояние между которыми 32,4 км одновременно выехали навстречу друг другу мотоциклист и велосипедист. Сколько километров проедет каждый из них до встречи, если скорость мотоциклиста в 4 раза больше скорости велосипедиста? 2) Найти два числа, сумма которых 26,35, а частное от деления одного числа на другое равно 7,5. 810. 1) Завод отправил три вида груза общим весом в 19,2 т. Вес груза первого вида был втрое больше веса груза второго вида, а вес груза третьего вида был вдвое меньше, чем вес груза первого и второго видов вместе. Каков вес груза каждого вида? 2) За три месяца бригада горняков добыла 52,5 тыс. т железной руды. За март добыто в 1,3, за февраль в 1,2 раза больше, чем за январь. Сколько руды добывала бригада ежемесячно? 811. 1) Газопровод Саратов — Москва на 672 км длиннее канала имени Москвы. Найти длину того и другого сооружения, если длина газопровода в 6,25 раза больше длины канала имени Москвы. 2) Длина реки Дона в 3,934 раза больше длины реки Москвы. Найти длину каждой реки, если длина реки Дона больше длины реки Москвы на 1 467 км. 812. 1) Разность двух чисел 5,2, а частное от деления одного числа на другое 5. Найти эти числа. 2) Разность двух чисел 0,96, а их частное 1,2. Найти эти числа. 813. 1) Одно число на 0,3 меньше другого и составляет 0,75 его. Найти эти числа. 2) Одно число на 3,9 больше другого числа. Если меньшее число увеличить в 2 раза, то оно составит 0,5 от большего. Найти эти числа. 814. 1) Колхоз засеял пшеницей и рожью 2600 га земли. Сколько гектаров земли было засеяно пшеницей и сколько рожью, если 0,8 площади, засеянной пшеницей, равны 0,5 площади, засеянной рожью? 2) Коллекция двух мальчиков вместе составляет 660 марок. Из скольких марок состоит коллекция каждого мальчика, если 0,5 числа марок первого мальчика равны 0,6 числа марок коллекции второго мальчика? 815. Два ученика вместе имели 5,4 руб. После того как первый истратил 0,75 своих денег, а второй 0,8 своих денег, у них осталось денег поровну. Сколько денег было у каждого ученика? 816. 1) Два парохода вышли навстречу друг другу из двух портов, расстояние между которыми 501,9 км. Через сколько времени они встретятся, если скорость первого парохода 25,5 км в час, а скорость второго 22,3 км в час? 2) Два поезда вышли навстречу друг другу из двух пунктов, расстояние между которыми 382,2 км. Через сколько времени они встретятся, если средняя скорость первого поезда была 52,8 км в час, а второго 56,4 км в час? 817. 1) Из двух городов, расстояние между которыми 462 км, одновременно выехали два автомобиля и встретились через 3,5 часа. Найти скорость каждого автомобиля, если скорость первого была на 12 км в час больше скорости второго автомобиля. 2) Из двух населённых пунктов, расстояние между которыми 63 км, одновременно выехали навстречу друг другу мотоциклист и велосипедист и встретились через 1,2 часа. Найти скорость мотоциклиста, если велосипедист ехал со скоростью на 27,5 км в час меньшей скорости мотоциклиста. 818. Ученик заметил, что поезд, состоящий из паровоза и 40 вагонов, проходил мимо него 35 сек. Определить скорость поезда в час, если длина паровоза 18,5 м, а длина вагона 6,2 м. (Ответ дать с точностью до 1 км в час.) 819. 1) Из А в Б выехал велосипедист со средней скоростью 12,4 км в час. Спустя 3 часа 15 мин. из Б навстречу ему выехал другой велосипедист со средней скоростью 10,8 км в час. Через сколько часов и на каком расстоянии от А они встретятся, если 0,32 расстояния между А и Б равны 76 км? 2) Из городов А и Б, расстояние между которыми 164,7 км, выехали навстречу друг другу грузовая машина из города А и легковая — из города Б. Скорость грузовой машины 36 км, а легковой в 1,25 раза больше. Легковая машина вышла на 1,2 часа позже грузовой. Через сколько времени и на каком расстоянии от города Б легковая машина встретит грузовую? 820. Два парохода вышли одновременно из одного порта и идут в одном направлении. Первый пароход в каждые 1,5 часа проходит 37,5 км, а второй в каждые 2 часа проходит 45 км. Через сколько времени первый пароход будет находиться от второго на расстоянии 10 км? 821. Из одного пункта вначале вышел пешеход, а через 1,5 часа после его выхода выехал в том же направлении велосипедист. На каком расстоянии от пункта велосипедист догнал пешехода, если пешеход шёл со скоростью 4,25 км в час, а велосипедист ехал со скоростью 17 км в час? 822. Поезд вышел из Москвы в Ленинград в 6 час. 10 мин. утра и шёл со средней скоростью 50 км п час. Позднее из Москвы в Ленинград вылетел пассажирский самолет и прилетел в Ленинград одновременно с прибытием поезда. Средняя скорость самолёта была 325 км в час, а расстояние между Москвой и Ленинградом 650 км. Когда самолёт вылетел из Москвы? 823. Пароход по течению реки шёл 5 час, а против течения 3 часа и прошёл всего 165 км. Сколько километров он прошёл по течению и сколько против течении, если скорость течения реки 2,5 км в час? 824. Поезд вышел из А и должен прибыть в Б в определённое время; пройдя половину пути и делая по 0,8 км в 1 мин., поезд был остановлен на 0,25 часа; увеличив далее скорость на 100 м в 1 млн., поезд прибыл в Б вовремя. Найти расстояние между А и Б. 825. От колхоза до города 23 км. Из города в колхоз выехал на велосипеде почтальон со скоростью 12,5 км в час. Через 0,4 часа после этого ИВ колхоза в город выехал на лошади колхозник со скоростью, ранной 0,6 скорости почтальона. Через сколько времени после своего выезда колхозник встретит почтальона? 826. Из города А в город Б, отстоящий от А на 234 км, выехал автомобиль со скоростью 32 км в час. Через 1,75 часа после этого из города Б выехал навстречу первому второй автомобиль, скорость которого в 1,225 раза больше скорости первого. Через сколько часов после своего выезда второй автомобиль встретит первый? 827. 1) Одна машинистка может перепечатать рукопись за 1,6 часа, а другая за 2,5 часа. За сколько времени обе машинистки перепечатают эту рукопись, работая совместно? (Ответ округлить с точностью до 0,1 часа.) 2) Бассейн наполняется двумя насосами различной мощности. Первый насос, работая один, может наполнить бассейн за 3,2 часа, а второй за 4 часа. За сколько времени наполнится бассейн при одновременной работе этих насосов? (Ответ округлить с точностью до 0,1.) 828. 1) Одна бригада может выполнить некоторый заказ за 8 дней. Другой на выполнение этого заказа требуется 0,5 времени первой. Третья бригада может выполнить этот заказ за 5 дней. За сколько дней будет выполнен весь заказ при совместной работе трёх бригад? (Ответ округлить с точностью до 0,1 дня.) 2) Первый рабочий может выполнить заказ за 4 часа, второй в 1,25 раза быстрее, а третий за 5 час. За сколько часов будет выполнен заказ при совместной работе трёх рабочих? (Ответ округлить с точностью до 0,1 часа.) 829. На уборке улицы работают две машины. Первая из них может убрать всю улицу за 40 мин., второй для этого требуется 75% времени первой. Обе машины начали работу одновременно. После совместной рвботы в течение 0,25 часа вторая машина прекратила работу. Во сколько времени после этого первая машина закончила работу по уборке улицы? 830. 1) Одна из сторон треугольника 2,25 см, вторая на 3,5 см больше первой, а третья на 1,25 см меньше второй. Найти периметр треугольника. 2) Одна из сторон треугольника 4,5 см, вторая на 1,4 см меньше первой, а третья сторона равна полусумме двух первых сторон. Чему равен периметр треугольника? 831. 1) Основание треугольника 4,5 см, а высота его на 1,5 см меньше. Найти площадь треугольника. 2) Высота треугольника 4,25 см, а его основание в 3 раза больше. Найти площадь треугольника. (Ответ округлить с точностью до 0,1.) 832. Найти площади заштрихованных фигур (рис. 38). 833. Какая площадь больше: прямоугольника со сторонами 5 см и 4 см, квадрата со стороной 4,5 см или треугольника, основание и высота которого равны по 6 см? 834. Комната имеет длину 8,5 м, ширину 5,6 м и высоту 2,75 м. Площадь окон, дверей и печей составляет 0,1 общей площади стен комнаты. Сколько кусков обоев понадобится для оклеивания этой комнаты, если кусок обоев имеет длину 7 м и ширину 0,75 м? (Ответ округлить с точностью до 1 куска.) 835. Надо снаружи оштукатурить и побелить одноэтажный дом, размеры которого: длина 12 м, ширина 8 м и высота 4,5 м. В доме 7 окон размером каждое 0,75 м х 1,2 м и 2 двери каждая размером 0,75 м х 2,5 м. Сколько будет стоить вся работа, если побелка и штукатурка 1 кв. м стоит 24 коп.? (Ответ округлить а точностью до 1 руб.) 836. Вычислите поверхность и объём вашей комнаты. Размеры комнаты найдите измерением. 837. Огород имеет форму прямоугольника, длина которого 32 м, ширина 10 м. 0,05 всей площади огорода засеяно морковью, а остальная часть огорода засажена картофелем и луком, причём картофелем засажена площадь в 7 paз большая, чем луком. Сколько земли в отдельности засажено картофелем, луком и морковью? 838. Огород имеет форму прямоугольника, длина которого 30 м и ширина 12 м. 0,65 всей площади огорода засажено картофелем, а остальная часть — морковью и свёклой, причём свёклой засажено на 84 кв. м больше, чем морковью. Сколько земли в отдельности под картофелем, свёклой и морковью? 839. 1) Ящик, имеющий форму куба, обшили со всех сторон фанерой. Сколько фанеры израсходовано, если ребро куба 8,2 дм? (Ответ округлить с точностью до 0,1 кв. дм.) 2) Сколько краски потребуется для окраски куба с ребром в 28 см, если на 1 кв. см будет истрачено 0,4 г краски? (Ответ, округлить с точностью до 0,1 кг.) 840. Длина чугунной заготовки, имеющей форму прямоугольного параллелепипеда, равна 24,5 см, ширина 4,2 см и высота 3,8 см. Сколько весят 200 чугунных заготовок, если 1 куб. дм чугуна весит 7,8 кг? (Ответ округлить с точностью до 1 кг.) 841. 1) Длина ящика (с крышкой), имеющего форму прямоугольного параллелепипеда, равна 62,4 см, ширина 40,5 см, высота 30 см. Сколько квадратных метров досок пошло на изготовление ящика, если отходы досок составляют 0,2 поверхности, которая должна быть обшита досками? (Ответ округлить с точностью до 0,1 кв. м.) 2) Дно и боковые стенки ямы, имеющей форму прямоугольного параллелепипеда, должны быть обшиты досками. Длина ямы 72,5 м, ширина 4,6 м и высота 2,2 м. Сколько квадратных метров досок пошло на обшивку, если отходы досок составляют 0,2 поверхности, которая должна быть обшита досками? (Ответ округлить с точностью до 1 кв. м.) 842. 1) Длина подвала, имеющего форму прямоугольного параллелепипеда, равна 20,5 м, ширина 0,6 его длины, а высота 3,2 м. Подвал заполнили картофелем на 0,8 его объёма. Сколько тонн картофеля поместилось в подвале, если 1 куб.м картофеля весит 1,5 т? (Ответ округлить с точностью до 1 т.) 2) Длина бака, имеющего форму прямоугольного параллелепипеда, равна 2,5 м, ширина 0,4 его длины, а высота 1,4 м. Бак наполнен керосином на 0,6 его объёма. Сколько тонн керосина налито в бак, если вес керосина в объёме 1 куб. м равен 0,9 т? (Ответ округлить с точностью до 0,1 т.) 843. 1) Во сколько времени можно обновить воздух в комнате, имеющей 8,5 м длины, 6 м ширины и 3,2 м высоты, если через форточку в 1 сек. проходит 0,1 куб. м воздуха? 2) Произведите подсчёт времени, необходимого для обновления воздуха в вашей комнате. 844. Размеры бетонного блока для постройки стен следующие: 2,7 м х 1,4 м х 0,5 м. Пустота составляет 30% объёма блока. Сколько кубометров бетона потребуется на изготовление 100 таких блоков? 845. Грейдер-элеватор (машина для рытья канав) за 8 час. работы делает канаву шириной 30 см, глубиной 34 см и длиной 15 км. Скольких землекопов заменяет такая машина, если один землекоп может вынуть 0,8 куб. м в час? (Результат округлить.) 846. Закром в форме прямоугольного параллелепипеда имеет в длину 12 м и в ширину 8 ж. В этом закроме насыпано зерно до высоты 1,5 м. Для того чтобы узнать, сколько весит всё зерно, взяли ящик длиной 0,5 м, шириной 0,5 м и высотой 0,4 м, наполнили его зерном и взвесили. Сколько весило зерно в закроме, если зерно в ящике весило 80 кг? 847. Подсчитать, сколько кормовых единиц даёт каждая культура на затраченный трудодень: 848. 1) Используя диаграмму «Выплавка стали в РСФСР» (pис 39). ответьте на следующие вопросы: а) На сколько миллионов тонн возросла выплавка стали в 1959 г. по сравнению с 1945 г.? б) Во сколько раз выплавка стали в 1959 г. была больше выплавки в 1913 г.? (С точностью до 0,1.) 2) Используя диаграмму «Посевные площади в РСФСР» (рис. 40), ответьте на следующие вопросы: а) На сколько миллионов гектаров увеличилась посевная площадь в 1959 г. по сравнению с 1945 г.? б) Во сколько раз посевная площадь в 1959 г. была больше посевной площади в 1913 г.? 849. Построить линейную диаграмму роста городского населения в СССР, если в 1913 г. городского населения было 28,1 млн человек, в 1926 г.—24,7 млн., в 1939 г.—56,1 млн. и в 1959г— 99,8 млн. человек. 850. 1) Составить смету на ремонт помещения вашего класса, если требуется побелить стены и потолок, а также покрасить пол. Данные для составления сметы (размеры класса, стоимость побелки 1 кв. м, стоимость покраски пола 1 кв. м) выяснить у завхоза школы. 2) Для посадки в саду школа купила саженцы: 30 яблонь по 0,65 руб. за штуку, 50 вишен по 0,4 руб. за штуку, 40 кустов крыжовника по 0,2 руб. и 100 кустов малины по 0,03 руб. за куст. Напишите счёт на эту покупку по образцу:
|
---|